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Abstract

Background and The biological pathways leading to elevated blood pressure (BP) and subsequent cardiovascular diseases (CVDs) remain in-
Aims completely understood. Investigating the proteomic landscape of BP and its overlap with CVD could provide critical insights
into the molecular determinants and pathways involved in BP regulation and its subsequent effect on CVD.

Methods A proteome-wide Mendelian randomization (MR) study was conducted by leveraging genetic instruments from 2007 plasma
proteins to assess their causal effects on BP (systolic and diastolic BP). Proteins showing strong associations with BP were
further analyzed for potential causal effects on coronary artery disease (CAD) and stroke subtypes. Network MR was per-
formed to estimate the proportion of CVD risk mediated through BP. Bayesian colocalization was applied to determine
whether identified associations share common causal variants. Observational associations were examined in UK Biobank
participants to assess associations between proteins, BP, and incident CVD events using linear regression and Cox propor-
tional hazard models.

Results Proteome-wide MR identified 242 proteins associated with BP, of which 48 were also linked to CAD or stroke, with four
(ACOXT1, FGFS5, FURIN, MST1) also supported by genetic colocalization analyses (FDR 5% and PP >70%). Genetically pre-
dicted FURIN and FGF5 were strongly associated with BP and stroke risk, while ACOX1, FGF5, and MST1 exhibited po-
tential causal effects on CAD. Network MR suggested that a substantial proportion of their effect on CAD and stroke
(30.59%—77.2%) was mediated through BP regulation. Observational analyses further supported these findings.

Conclusions This study identifies key plasma proteins with potential causal roles in BP regulation and CVD risk, highlighting BP as a major
mediator of their effects on CAD and stroke. These findings provide novel insights into the molecular mechanisms under-
lying hypertension-related CVD and identify promising protein targets for further investigation.
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Structured Graphical Abstract

Key Question

Is there a subset of plasma proteome shared between high blood pressure (BP), coronary artery disease (CAD), and stroke? How do

these proteins influence cardiovascular risk through their effects on BP?

Key Finding

Mendelian randomization and genetic colocalization analyses identified four potentially causal protein candidates shared among BP, CAD,
and stroke. The association of these four proteins (ACOX1, FGF5, FURIN, and MST1) was further supported by observational analyses.
Mediation analysis suggested their effects on cardiovascular risk were substantially mediated through BP.

Take Home Message

These findings identify novel therapeutic targets for dual BP and cardiovascular risk reduction to test in future trials.
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Introduction

Elevated blood pressure (BP) is a leading modifiable risk factor for pre-
mature death, cardiovascular disease (CVD), and all-cause mortality, af-
fecting an estimated 1.28 billion adults aged 3079 years worldwide."?
Even small increases in BP are associated with a higher risk of CVD; for
instance, each 10 mmHg increase in systolic blood pressure (SBP) is
linked to a 45% higher risk of coronary artery disease (CAD) and
~65% higher risk of stroke.**

Substantial epidemiological evidence highlights shared lifestyle and
genetic risk factors between BP and CVD. However, the molecular

pathways linking elevated BP and its progression toward CVDs remain
incompletely understood. Elucidating these pathways is crucial for iden-
tifying new therapeutic targets and developing more effective strategies
to mitigate the burden of BP-related CVD. Proteomics, the rapidly
evolving field of studying proteins at large scale, offers a powerful ap-
proach to uncovering these pathways by identifying molecular targets
that may serve as key regulators of cellular signalling and function and
represent a major source of therapeutic targets for many diseases.>®
In the context of BP, they may act as mediators of high BP (e.g. through
vasoconstriction or vascular remodelling) or as plasma-based markers
of cellular dysfunction linked to hypertensive physiology. Investigating
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the proteomic landscape of BP and its overlap with CVD could, there-
fore, provide critical insights into the molecular determinants and path-
ways involved in BP regulation and its subsequent effect on CVDs’~'"

In this study, we systematically evaluated the proteomic determi-
nants of BP through a comprehensive proteome-wide Mendelian
randomization (MR) analysis. MR leverages genetic variants as instru-
mental variables (IVs) to assess potential causal relationships between
exposures (e.g. protein abundance) and outcomes (e.g. BP and CVD).
This approach is analogous to randomized controlled trials, as genetic
variants are randomly allocated at conception, helping to mitigate con-
founding and reverse causation."’ Recent large-scale proteogenomic
studies have identified thousands of genetic variants associated with
protein abundance (protein quantitative trait loci, or pQTLs), offering
a unique opportunity to apply MR to investigate the causal roles of
plasma-based markers in disease pathways.'> To further investigate
whether the plasma-based proteomic determinants of BP are also asso-
ciated with CVDs, we extended our analysis to include CAD and stroke
and performed network MR to assess the potential mediating role of BP
in linking BP-associated proteins to CVDs. Extensive downstream ana-
lyses, including Bayesian colocalization, observational analysis using Cox
regression models, and phenome-wide association studies (Phe WAS),
were applied to substantiate the robustness of our findings and their
relevance to other outcomes. Overall, our work prioritizes plasma-
based biomarkers for BP-related CVDs, enhances the understanding
of their molecular underpinnings, and informs the development of im-
proved prevention and treatment strategies to reduce the CVD burden
through BP management.

Methods

As outlined in Figure 1, we began with a proteome-wide MR analysis using
cis-pQTLs for 2923 plasma proteins to assess their potential causal effects
on SBP and DBP. Genetically predicted proteins showing strong associa-
tions with BP were then evaluated for potential causal effects on CAD
and stroke subtypes using the same MR framework. For genetically pre-
dicted proteins associated with both BP and CVD outcomes, Bayesian co-
localization was performed to assess whether shared genetic variants
underlie these associations. Proteins with strong MR and colocalization evi-
dence were carried forward for network MR to estimate the proportion of
CVD risk mediated by BP. We triangulated these results with observational
analyses in UK Biobank (UKB) participants, examining the associations be-
tween protein levels, BP medication use, BP levels, and incident CVD
events. Finally, PheWAS analyses were conducted for the lead genetic var-
iants to assess pleiotropy across a broad range of traits.

Proteome-wide Mendelian randomization

Genome-wide association study data sources for proteins,
blood pressure, and cardiovascular disease outcomes

Genetic variants associated with 2923 unique plasma proteins in up to
~54219 participants, primarily of European ancestry, were obtained from
publicly available genome-wide association study (GWAS) data through the
UKB Pharma Proteomics Project (UKB-PPP)."* UKB-PPP is a precompeti-
tive consortium of 13 biopharmaceutical companies funding the generation
of blood-based proteomic data in a subset of UKB participant. Summary
statistics of GWAS for all stroke (AS; N =73 652 cases and 1234 808 con-
trols) and four subtypes including ischaemic stroke (AIS; N =62 100 cases
and 1234808 controls), cardioembolic stroke (CES; N=10804 cases
and 1234808 controls), large artery stroke (LAS; N=6399 cases and
1234808 controls), and small vessel stroke (SVS; N=6811 cases and
1234 808 controls) were obtained from the GIGASTROKE consortium,**
Genome-wide association studies data for CAD (N = 122733 cases and
N =547 261 controls) were obtained from the meta-analysis by van der

Harst et al.'® Further details of all GWAS datasets used in this analysis
can be found in Supplementary data online, Table S1.

Previous BP GWAS'®" included the UKB data and adjusted for body mass
index (BMI) as covariate in the GWAS model, which may introduce bias due
to sample overlap'® and collider bias in MR, respectively. To address these,
we performed a GWAS of SBP [mean (SD) = 141.09 (20.64); mmHg] and
DBP [mean (SD) = 84.28 (11.24); mmHg] in up to 410 170 Europeans from
the UKB excluding the subsample of UKB-PPP [mean age (SD)=56.7
(8.01); N =~54219]. Briefly, UKB is a prospective cohort study from the
UK, which contains >500 000 volunteers between 40 and 69 years of age
at inclusion. The study design, sample characteristics and genome-wide
genotype data have been described previously.® Following informed con-
sent, participants completed a standardized questionnaire on life course ex-
posures, medical history and treatments, and underwent a standardized
portfolio of phenotypic tests including two BP measurements taken seated
after a 2 min rest using an appropriate cuff and an Omron HEM-7015IT
digital BP monitor. A manual sphygmomanometer was used if the standard
automated device could not be employed. Two traits (SBP and DBP) were
analysed as described previously.' In brief, the mean SBP and DBP values
were calculated from two automated (N =418 755) or two manual (N =
25888) blood pressure measurements. For individuals with one manual
and one automated blood pressure measurement (N=13521), the
mean of these two values was used. For individuals with only one available
BP measurement (N =413), we used the single value. After calculating BP
measurements, we adjusted for medication use by adding 15 and
10 mmHg to SBP and DBP,'®"”"22 respectively, for individuals reported
to be taking BP-lowering medication (n=94289). The GWAS (without
BMI adjustment) was performed using BOLT-LMM software,?® and quality
control filters were applied as described previously.'® Next, we systemat-
ically compared our BP GWAS with the one performed by Evangelou
et al.® to further validate our findings. We calculated the genetic correl-
ation®* for SBP and DBP between the two GWAS datasets and observed
a strong positive correlation for both traits: SBP (rg =0.95, se =0.004) and
DBP (rg =0.91, se = 0.005). These rg estimates demonstrate that the effect
estimates from our BP GWAS (excluding the UKB-PPP cohort) were highly
correlated with those reported in the existing BP GWAS. The studies used
in our analysis were approved by their respective institutional review boards,
and informed consent was provided by all participants.

Selection of cis-pQTLs as genetic instruments and
Mendelian randomization analyses

To obtain genetic IVs for the 2923 plasma proteins,'® we extracted
cis-acting biallelic single nucleotide polymorphisms (SNPs) (located within
+1 megabase [mb] of the corresponding gene encoding the protein; defined
as cis-pQTL) and minor allele frequency (MAF) > 0.01. Genetic instruments
were further filtered by the strength of association (P <5x 107%) and
clumped at a pairwise linkage disequilibrium (LD) threshold of r? < 0.001
and a window of 10000 kilobases (kb) using the TwoSampleMR R pack-
age.2>?® For all MR and subsequent downstream sensitivity analyses, we uti-
lized a randomly selected reference panel of 10 000 individuals of European
ancestry from the UKB for generating instruments and 1000 Genomes
European ancestry individuals (Phase 3) for clumping.?’ This reference pa-
nel provides a representative sample of the underlying population, given the
substantial overlap between the GWAS we utilized and UKB participants,
enabling precise LD estimation.

For MR causal estimates to be valid, the following assumptions must be
met: the genetic instruments (i) are strongly associated with the exposure,
(if) are not associated with any potential confounder of the exposure—
outcome association, and (i) do not affect the outcome independently
of the exposure. The inverse-variance weighted (IVW) method (for >2
IVs) or the Wald ratio method (for <2 IVs) was used as the primary ap-
proach for all MR analyses. Briefly, the Wald ratio method estimates the
causal effect by taking the ratio of SNPs effect on outcome (BP and CVD
outcomes) to SNPs effect on exposure (protein abundance), while the
IVW method performs a weighted linear regression on the variant-specific
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ratio estimates by inverse-variance weighting and has higher statistical
power when all IVs used are valid instruments.?® All SNPs effects were de-
rived from GWAS summary statistics described in the previous section. For
traits instrumented by >3 Vs, we performed Cochran’s Q test to detect
the presence of heterogeneity. Benjamini-Hochberg false discovery rate
(FDR) correction was applied and an FDR-corrected P < .05 was consid-
ered statistically significant.”® For continuous outcomes, beta estimates
were obtained directly from the MR estimates, while for dichotomous out-
comes, odds ratios were derived by exponentiating the MR estimates. For
significant associations with no evidence of heterogeneity (FDR-corrected
P < .05, Cochran’s Q > 0.05), we included additional criteria to increase
the reliability of the instruments and comply with the MR assumptions.
We therefore excluded proteins from downstream analyses when (i) bidir-
ectional MR?® or Steiger filtering approach®® showed evidence for reverse
causality (i.e. genetic predisposition to outcome has a putative causal effect
on the protein) and (ii) F-statistic was lower than 10 from the MR analysis to
avoid potential weak instrument bias.>’

Network Mendelian randomization and proportion
mediated

To investigate the potential mediating effects of BP on the protein-CAD/
stroke associations, we applied a two-step MR strategy (network MR).*?
Specifically, we performed two-sample cis- and univariable MR analyses to

investigate the potential causal effect of proteins on BP (B4), the potential cau-
sal effect of BP on CAD/stroke (), and the potential causal effect of proteins
on CAD/stroke (Bre). The proportion mediated was then estimated as 1 X
B,/B3% and the standard error and 95% confidence interval (95% Cl) were es-
timated using the delta method.** We verified that By, B2, and Brg were in the
same effect direction to avoid inconsistent mediation.*?

Genetic colocalization

To investigate whether the genetic associations between proteins, BP, and
CVD outcomes share the same causal variants and are not confounded by
LD, we employed a Bayesian colocalization approach.>* The colocalization
analysis was performed on the pre-defined cis-region (i.e. +1mb) of the cor-
responding coding gene, with low frequency and rare variants (MAF <0.01)
excluded. Priors were set as default that any SNP within the colocalization
window was exclusively associated with the two traits with the probability
of 1x 107 and associated with both traits with the probability of 1x
107>.3> Each configuration of the two traits could be assigned to one of the
hypotheses; hypothesis 0: no association, hypothesis 1 and 2: only one trait
is associated, hypothesis 3: both traits are associated but with different causal
variants, and hypothesis 4: both traits are associated and share the same causal
variant. A colocalization posterior probability of hypothesis 4 (PP) higher than
70% was considered evidence that the 2 traits colocalize in the region.*® The
colocalization was conducted using the ‘coloc’® R packages.
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Furthermore, we used multi-trait colocalization to examine colocaliza-
tion across the plasma protein level, BP, and CVD.>” The window for the
multi-trait colocalization was set the same as the conventional colocaliza-
tion method mentioned previously. Default priors were set so that any vari-
ant within the colocalization window had a 1 x 10™ probability of being
associated with one trait, 1 x 107 for two traits, and 1 x 107 for all three
traits.>” The multi-trait colocalization PP >70% was considered as strong
evidence of colocalization, whereas the colocalization PP > 50% was con-
sidered suggestive evidence of colocalization.*® The multi-trait colocaliza-
tion analysis was conducted using the ‘moloc’ R package.?”

For gene dense regions (i.e. proteins whose cognate genes are in close
proximity), we performed PairWise Conditional and Colocalisation
(PWCoCo0)*® to address the single causal variant assumption of colocaliza-
tion and examine independent colocalization of non-primary signals. These
regions were defined among protein candidates associated with both BP
and CVD outcomes as those where a gene’s + 500 kb window overlaps
with the £500 kb window of another gene on either side of the coding re-
gion (N =22). Additionally, to further mitigate bias due to pleiotropy, we
cross-referenced the genotype-tissue expression (GTEx)** and Open
Targets Genetics portal®® for proteins which we prioritized and we deter-
mined whether the cis-pQTLs for these proteins (i.e. the variants used as
genetic instruments for MR) were also cis-eQTLs (i.e. whether the same
genetic variant affects the cognate gene’s expression) for the corresponding
gene. Following this, pQTLs were excluded if they were identified as pleio-
tropic with no evidence of being an eQLT.

Protein-protein interactions

To identify BP relevant pathways and to summarize proteins associated
with BP and CVD in functional networks, we submitted genetically pre-
dicted proteins associated with both BP and CVD outcomes from the
proteome-wide MR to the Search Tool for the Retrieval of Interacting
Genes (STRING) database, version 12.0 to construct protein-protein inter-
action (PPI) networks.*" In the STRING database, only experimentally vali-
dated interactions reaching a confidence threshold of 0.4 were considered.
We next identified communities present in the derived network using the
Leiden clustering algorithm.*? Enrichment analysis of proteins included in each
community was conducted with Enrichr,* using an FDR-corrected P < .05 to
declare significant enrichment results.

Observational analyses

We triangulated MR findings with observational evidence obtained from
UKB. To examine associations between BP treatment and plasma proteins
with evidence of causality from MR analysis on BP, we leveraged the proteo-
mics data from UKB individuals with hypertension (hypertension diagnosis
prior to blood sample collection or by the use of BP medication at collec-
tion). Hypertension was defined based on the CALIBER code list for hyper-
tension in general practitioner records or hospital episode statistics.**
Individual protein levels were adjusted by age and sex, and the residuals
were rank inverse normalized. T-tests were used to compare adjusted pro-
tein levels between hypertensive individuals with and without prescribed BP
medication. To isolate the effect of BP medication, we conducted sensitivity
analysis excluding individuals taking medication for high cholesterol and dia-
betes. False discovery rate correction was applied, and an FDR-corrected
P < .05 was considered statistically significant.

We also assessed the association between each of the proteins that
showed strong evidence of causality and colocalization for BP and CVD
with BP levels (cross-sectional analysis) and incident CVD (longitudinal ana-
lysis). To study the association between protein levels and BP, we used sep-
arate linear regression analyses with standardized levels of each protein of
interest as the predictor and BP measurements as the outcome.
Standardized beta coefficients for the association between protein levels
and SBP are reported. Cox proportional hazard models were used to cal-
culate hazard ratios between standardized protein levels and time-to-event
of composite CVD (CAD and stroke), as well as stroke and CAD

separately. For both linear regressions and Cox regressions, we ran sequen-
tial models adjusted for (a) age and genetic sex; (b) Townsend deprivation
index, body mass index, smoking status; (c) LDL and HDL cholesterol, dia-
betes and high cholesterol medication. Separate models were run for SBP
and DBP. Diagnosis of CAD and stroke was defined by patient linked gen-
eral practitioner records (readcode), hospital episode statistics (ICD-10)
and death records (ICD-10) within the June 2023 UKB release using the
CALIBER code list* for stroke and CAD code list from Patel et al.*®
Participant follow-up began at the date of blood sample collection and
time-to-event was set at whichever occurred first; the first instance of diag-
nosis, death of the participant, or censoring date (June 2023). Participants
with prevalent CVD at baseline were excluded from Cox regression
analyses.

Phenome-wide association study

We conducted PheWAS analyses to assess associations linked to lead
cis-pQTLs across various traits beyond cardiovascular disease and to
identify potential opposing effects with other phenotypes. We con-
ducted these analyses in the UKB with participants of European ancestry
for the lead cis-pQTLs of proteins that showed strong evidence of causality
(FDR <0.05) and colocalization (PP >70%). One individual from each pair of
relatives (kinship coefficient >0.0884) was randomly excluded. The final sample
consisted of 424 439 individuals. Cases and controls were defined using the
International Classification of Diseases 9th (ICD-9) or 10th (ICD-10)
Revision codes, derived from the inpatient Hospital Episode Statistics
(HES) records, and translated into phecodes according to the PheWAS R
package.*® Controls were identified as individuals without records of the re-
spective phecode. We restricted our analysis to phecodes with at least 200
cases, as suggested previously.*” Logistic regression models were employed,
adjusting for age, sex, and the first four genetic principal components.

Software

All statistical analyses were performed with R open-source software (ver-
sion 4.3.2).*% Data harmonization, clumping, and primary MR were con-
ducted with TwoSampleMR package (version 0.5.8).> We used ‘coloc’
package (version 5.2.3)** for conventional colocalization and ‘moloc’ for
multi-trait colocalization.’” Genetic correlation was estimated using
LDSC.** Region genomic plots for conventional colocalization were created
with the locuscomparer package (version 1.0.0)*’ and gassocplot package
(version 1.0; https:/github.com/jrs95/gassocplot).

Results

Of the 2 923 measured proteins, cis-region genetic association summary
statistics (cis-pQTLs; P <5 x 1078) were available for 2 007 circulating
proteins after removal of proteins falling within the major histocompati-
bility complex region (due to the complex LD in this region; N = 34).

Genetically predicted proteins associated
with blood pressure and cardiovascular
disease
Proteome-wide cis-MR analysis identified 242 genetically predicted
proteins associated with SBP or DBP (185 for SBP, 137 for DBP;
FDR < 0.05) with no evidence of heterogeneity (Cochran’s Q > 0.05)
or evidence for reverse causality as assessed by bidirectional MR or
Steiger filtering (see Supplementary data online, Tables S2-54, Figure 2).
Of the 242 BP-associated genetically predicted proteins, 48 (19.8%)
were also associated with either CAD (42 proteins) or stroke (17 pro-
teins) using the same criteria. Of these, 37 showed consistent direction
of effects between BP and CVD traits (Figure 2C and D; Supplementary
data online, Figures S1-S10; Supplementary data online, Tables S5-S17).
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Figure 2 Plasma protein as potential causal candidates for systolic blood pressure (SBP) and diastolic blood pressure (DBP) and their effects on CAD
and stroke outcomes. Volcano plots illustrating the potential causal effect (IVW method or Wald ratio method) of each genetically predicted protein on
(A) SBP; (B) DBP. The top 20 candidates ranked by FDR-corrected P < .05 are labelled in the volcano plots; (C) Heatmap showing the proteins that
passed sensitivity filters for SBP and their potential causal effect on cardiovascular outcomes; and (D) Heatmap showing the proteins that passed sen-
sitivity filters for DBP and their potential causal effect on cardiovascular outcomes. Dots in the cell represent a protein-outcome association that passes
the sensitivity filters (FDR < 0.05, Cochran’s Q > 0.05, no reverse causation). Effect size on BP measures are in mmHg. AlS, all ischaemic strokes; AS, all

strokes; CAD, coronary artery disease; CES, cardioembolic stroke; LAS, large artery stroke; SVS, small vessel stroke
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In protein—protein interaction analyses, these proteins highlighted
crosstalk between pathways including STK signalling, angiopoietin sig-
nalling, extracellular matrix (ECM) remodelling and angiogenesis (see
Supplementary data online, Figure S17; Supplementary data online,
Table $18).

Subsequent colocalization analysis for those 48 proteins highlighted
13 proteins with strong evidence of sharing a single causal variant with
SBP or DBP (PP >70%; Supplementary data online, Table $19). Of
these, 5 proteins (ACOX1, BRAP, ERP29, FGF5, and FURIN) also
showed strong colocalization with CAD and/or stroke and all had con-
cordant direction of effects for BP and CAD and/or stroke (see
Supplementary data online, Figures S12 and S13; Supplementary data
online, Table S20). For gene dense regions (see Methods), we also per-
formed PWCoCo which highlighted a conditionally independent signal
(rs34484573) for MST1 with strong evidence of colocalization with SBP
(PP =76.4%) and CAD (PP =96.5%; Figure 3; Supplementary data
online, Table S21). Lead cis-pQTLs of these 6 proteins (including
MST1) with robust colocalization evidence were also cis-eQTLs for
cognate gene (GTEXx) except for BRAP and ERP29, indicating that the
genetic effect on protein abundance is at least partially mediated
through changes in gene expression at the mRNA level (see
Supplementary data online, Table S22). BRAP and ERP29 were ex-
cluded from downstream analysis. Multi-trait colocalization results for
these signals for BP and CVD outcomes are outlined in
Supplementary data online, Figures S14-S18 and Supplementary data
online, Table S23. For example, FGF5 and ACOX1 showed strong evi-
dence of colocalization with BP and CAD (PP > 95% and PP > 70%, re-
spectively), while FURIN with BP and AS (PP > 79%). The SNPs being
utilized as IVs in the proteome-wide MR analyses for the 4 prioritized
proteins are listed in Supplementary data online, Table $24.

Replication of blood pressure-associated

proteins in ICBP consortium

We next sought to replicate the MR results of the 4 proteins in inde-
pendent data from ICBP. Among them, the potentially causal effects
of 3 prioritized proteins (ACOX1, FGF5, and FURIN) were replicated
using an independent BP GWAS (ICBP consortium with N =299 024
for DBP and n =287 245 for SBP).SO MST1 showed comparable effect
estimate and consistent direction of effect, but did not reach nominal
significance (P =.06) (see Supplementary data online, Figure $19).

Mediation analysis

The four proteins (ACOX1, FGF5, FURIN, and MST1) that showed
strong evidence of sharing a single causal variant through colocalization
with both BP and CVDs in the previous step (B4 and Brg) were carried
forward for the mediation analysis. Higher genetically predicted SBP
and DBP were associated with a higher risk of CAD and stroke (B,.
Supplementary data online, Figures $20-S22; Supplementary data
online, Table S25). Subsequent network MR (B1 X B,/B1e) suggested
that genetically predicted SBP and DBP potentially mediate the effect
of proteins on CAD and stroke. For example, we estimated that
72.6% [95% Cl = (49.2%, 96.1%)] of the effect of FGF5 on CAD may
be mediated through SBP (see Supplementary data online, Table S26;
Figure 4), and 77.2% [95% Cl = (31.9%, 100%)] of the effect of FGF5
on AlIS mediated through SBP.

Triangulation with observational data

In the comparative analysis of 35 shared proteins with consistent direc-
tion of effect between the BP and CVD traits identified through the MR

analysis, we found that 21 protein levels were associated with BP treat-
ment (Figure 5). Regarding the four prioritized proteins, individuals on
BP medications had significantly lower circulating levels of FURIN and
MST1, compared to individuals with hypertension but not on BP medi-
cation, even after excluding individuals with diabetes or lipid-lowering
medications (see Supplementary data online, Table S27; Figure 5).

Observational analysis using linear regression models revealed that all
four proteins with robust evidence of causality and colocalization for BP
and CVD were significantly associated with baseline SBP in models ad-
justed for multiple potential confounders (Figure 3D; Supplementary
data online, Table $28). Also, in Cox proportional hazard models, all
proteins were associated with CVD outcomes in minimally adjusted
models (age and sex) and of them FGF5, FURIN and MST1 were asso-
ciated with higher risk of composite CVD in subsequent models including
arange of cardiovascular risk factors (Figure 3A—C, see Supplementary data
online, Tables $29 and S30 for CVD subtypes).

Phenome-wide association studies for
genetic variants driving Mendelian

randomization and colocalization

We also performed a PheWAS across 845 phenotypes, focusing on the
lead cis-pQTLs of the four proteins prioritized in colocalization analysis.
All examined lead cis-pQTL showed associations with a range of cardio-
vascular phenotypes and cardiovascular risk factors without evidence
for detrimental or adverse effects in other examined phenotypes (see
Supplementary data online, Figures S23 and S24 and Supplementary
data online, Table S31).

Discussion

Here, we present a comprehensive framework triangulating genetic and
observational analyses highlighting the proteomic landscape of BP and
its link to CVD. Through proteome-wide MR and Bayesian colocaliza-
tion analysis, we prioritized 12 circulating plasma proteins with a poten-
tial causal role in BP regulation. Among these, genetically predicted
levels of four proteins—ACOX1, FGF5, FURIN, and MST1—also de-
monstrated evidence of potential causal associations with CAD and/
or stroke, supported by observational analysis. Mediation analyses fur-
ther indicated that BP acts as a critical intermediary, with a substantial
proportion of the effect of these proteins on CAD and/or stroke
mediated through BP levels (Structured Graphical Abstract).

Our findings highlight acyl-CoA oxidase 1 (ACOX1) as a protein
consistently associated with both BP and CAD in genetic and observa-
tional analysis, though the observational associations were attenuated
after adjusting for other cardiovascular risk factors. ACOX1 is an en-
zyme primarily responsible for the oxidation of very-long-chain fatty
acids in the peroxisome, and recent animal and human data supports
its role in obesity, lipid metabolism, and insulin resistance.”’ A liver-
specific knockout of ACOXT has been reported to promote resistance
to diet-induced obesity, inflammation, and insulin resistance, further re-
inforcing its metabolic significance.>’ Additionally, common genetic var-
iants in ACOX1 have been associated with SBP°? and lipid Ievels,53
aligning with our findings. Collectively, evidence suggest that ACOX1
likely plays a pivotal role in cardiovascular pathology, with its effects
partly mediated through SBP regulation.

FURIN is a peptidase that activates key proteins involved in inflam-
mation, vascular remodelling, and lipid metabolism.>**> Growing
evidence supports FURIN’s role in CVD, with support from obser-
vational, proteogenomic, and basic science studies.”®>’ FURIN is
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Figure 3 Mendelian randomisation analyses for the effect of genetically predicted plasma protein levels on cardiovascular outcomes and blood pres-
sure measures. Forest plots illustrating the effect of prioritized plasma proteins (FDR-corrected P < .05 and PPH4 > 70%) on (A—C) cardiovascular out-
comes; and (D) blood pressure. Odds ratio refers to the genetically predicted effects of plasma protein levels on outcomes of interest, estimated from
MR analysis. Effect size on BP measures are in mmHg. Hazard ratio (HR) was estimated from the Cox proportional hazard models in the observational
analysis; TRepresents a colocalized signal from the PWCoCo analysis; *Represents significantly associated proteins in the observational analysis

expressed in arterial tissue, and cis-pQTL SNPs have been linked to cor-
onary heart disease (CHD) and cardiovascular risk factors, further impli-
cating its role in vascular health.>” Here we provide additional evidence
supporting a potential causal association between FURIN and stroke,
with approximately 40% of its effect mediated through BP regulation.
Notably, these associations were also observed in a range of observa-
tional analyses in agreement with previous evidence.”® FURIN is current-
ly being explored as a drug target, with several phase 1 and 2 clinical trials
investigating FURIN inhibitors for cancer immunotherapy showing
promising efficacy and a good safety profile.® Our PheWAS analysis
supports the safety of targeting FURIN, though no clinical trials have
yet investigated its therapeutic potential for CVD. The present evidence
and insights from previous trials may further inform the development of
furin-targeted treatments and therapeutic interventions for CVD.

FGF5 (fibroblast growth factor 5) is a well-established hypertension
susceptibility gene, with genetic variants linked to elevated SBP, DBP,
and stroke.®®¢" Our findings further support a potential causal link be-
tween increased plasma FGF5 levels, BP, and subsequent CHD and is-
chaemic stroke, aligning with previous MR studies and reinforcing
observational evidence on FGF5 plasma levels. Fibroblast growth

factors have been extensively studied as potential therapeutic targets
for cardiovascular disease, primarily due to their metabolic and angio-
genic effects. However, FGF5 has received comparatively less attention.
While non-BP-related mechanisms, such as cardiovascular remodelling,
have been proposed to explain FGF5's role in CVD,%? our findings sug-
gest that a significant proportion of its effect on CHD and ischaemic
stroke is mediated through BP regulation.

Macrophage stimulating 1 (MST1), a key component of the Hippo
pathway, was highlighted through MR, colocalization, and observational
analysis. MST1 activation has been implicated in dilated cardiomyop-
athy, cardiomyocyte death following ischaemic injury, and inhibition
of cardiac growth.®*** Experimental studies further suggest that
MST1 knockdown reduces atherosclerotic plaque formation and im-
proves metabolic health, including protection against non-alcoholic
fatty liver disease.>®® Our study provides evidence of a potentially cau-
sal effect of MST1 on BP, a link that has been little explored.
Additionally, our findings further suggest that MST1’s effect on CAD
may be mediated by its detrimental influence on BP levels, reinforcing
its role as a potential contributor to vascular dysfunction. Although
MST1-targeting drugs remain in the preclinical stage, inhibitors have

GZ0Z 1890100 £Z uo Jasn Aseiqi uopuo] absjj09 jeusdw] Aq 2696/28/SZ/1eYs/lueayina/ce0 L 01 /10p/ajonie-aoueApe/lieayina/wod dno-olwspese//:sdny woJj papeojumoq



Blood pressure, plasma proteins, and cardiovascular diseases

A

B2=0.04

Mediator
SBP
B1=243
BTE =0.30
ACOX1

Mediator
B1=136/078

B2 = 0.04/0.06

Mediation [95% CIJ
30.5% [9.5%, 51.4%]

Cc

B1=3.231.75
“—) FURIN

D

Mediator
SBPIDBP

[ B2 =0.02/0.03

Mediation [95% CI]
40.0% [22.2%, 57.8%)]
32.6% [17.8%, 47.5%)

B2=10.02/0.04

Mediation [95% CI]
34.3% [20.1%, 48 5%)
28.5% [16.5%, 40.6%]

Mediation [95% CI] Mediator B2=004
72.6% [49.2%, 96.1%] s8p
66.5% [46.1%, 86.8%]
B1=026
BTE=0.03 Mediation [95% Cif

;-

33.2% [6.9%, 59.5%]

SBP/DBP

B2 =0.02/0.04
Mediation [95% CIJ
77.2% [31.9%, 100%)
68.1% [28.5%, 100%]

[a] nSNP  Exp e: blood pressure B2 (95% Cl) FDR
CAD 396 ‘ 0.037 (0.033 to 0.042) 1.5x 107
388 —A— 0.059 (0.052 to 0.066) {2x 10-50
g 383 0.022 (0.019 to 0.025) 9x10°¥ SBP
381 - 0.033 (0.028 to 0.039) 13x 102 4 pp
AIS 381 3 0.023 (0.020 to 0.026) 7.8x 107
381 —A— 0.035 (0.030 to 0.041) 4.3x 10-32
o D;JZ 0.‘[}4 0.65

Figure 4 Mediation analyses showing estimated proportion of BTE from plasma proteins on CAD and stroke mediated through BP. (A) ACOX1 effect
on CAD potentially mediated by SBP. (B) FGF5 effect on CVDs potentially mediated by SBP and DBP. (C) FURIN effect on CVDs potentially mediated
by SBP and DBP. (D) MST1 effect on CAD potentially mediated by SBP. All effects were estimated from the MR analysis. (E) Effect of BP on CVDs from
the network MR. Effect estimates for BTE were in logOR units. Proportion mediated was estimated as f1 x B2/BTE. 95% confidence intervals were
derived using the delta method
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shown potential in suppressing MST1 activity.*” Given its broad physio-
logical impact, further research is needed to clarify MST1’s therapeutic
potential in cardiovascular health.

Strengths and limitations

Our study has several strengths. First, to the best of our knowledge, this
is one of the first studies to examine the potential mediating role of BP
in the relationship between plasma proteins and CVDs, utilizing
large-scale genomics data. Second, we have integrated evidence from
MR, colocalization, observational analysis, and PheWAS analyses to
strengthen the robustness of our findings. Some limitations require
careful consideration in interpretation of our findings. First, the
summary-level data sources used are primarily from participants of
European ancestry, which limits the generalizability of our findings to
other populations. Second, several cis-pQTLs used in the MR analysis
could be protein-altering variants or in high linkage disequilibrium
with these variants, potentially leading to an aptamer binding effect.
Among the proteins we prioritized, we noted that cis-pQTLs used as
genetic instruments for ACOX1 were in high LD (r* > 0.8; 1000 gen-
omes reference panel) with missense or stop-gained variants.
However, for ACOX1, the lead cis-pQTL (rs10852766) is also a
cis-eQTL (eQTLGen, Open Target Genetics), indicating that it affects
ACOX1 expression levels independent of aptamer binding. This may im-
ply that potential causal associations between ACOX1 and CAD may
still hold true. Third, despite efforts to avoid sample overlap, some par-
ticipants from the CAD GWAS may have also contributed to the
UKB-PPP, potentially leading to attenuated causal effect estimates.
We mitigated this bias by consistently using genetic instruments with
F-statistics >10 throughout the study.

In summary, our study provides strong evidence for shared
proteomic signatures associated with BP, CAD, and stroke out-
comes, highlighting proteins that may affect cardiovascular risk
through modifiable risk factors such as BP. Our findings underscore
the critical role of BP as a mediator in the relationship between cir-
culating proteins and cardiovascular outcomes, particularly for
FGF5, FURIN, ACOX1, and MST1. These proteins represent prom-
ising targets for further research, with potential implications for no-
vel therapeutic interventions aimed at BP regulation and CVD
prevention. Further research should aim at validating those findings
and exploring mechanistic pathways to aid the translational poten-
tial of those discoveries.
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