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Abstract

Background and 
Aims

The biological pathways leading to elevated blood pressure (BP) and subsequent cardiovascular diseases (CVDs) remain in
completely understood. Investigating the proteomic landscape of BP and its overlap with CVD could provide critical insights 
into the molecular determinants and pathways involved in BP regulation and its subsequent effect on CVD.

Methods A proteome-wide Mendelian randomization (MR) study was conducted by leveraging genetic instruments from 2007 plasma 
proteins to assess their causal effects on BP (systolic and diastolic BP). Proteins showing strong associations with BP were 
further analyzed for potential causal effects on coronary artery disease (CAD) and stroke subtypes. Network MR was per
formed to estimate the proportion of CVD risk mediated through BP. Bayesian colocalization was applied to determine 
whether identified associations share common causal variants. Observational associations were examined in UK Biobank 
participants to assess associations between proteins, BP, and incident CVD events using linear regression and Cox propor
tional hazard models.

Results Proteome-wide MR identified 242 proteins associated with BP, of which 48 were also linked to CAD or stroke, with four 
(ACOX1, FGF5, FURIN, MST1) also supported by genetic colocalization analyses (FDR 5% and PP ≥70%). Genetically pre
dicted FURIN and FGF5 were strongly associated with BP and stroke risk, while ACOX1, FGF5, and MST1 exhibited po
tential causal effects on CAD. Network MR suggested that a substantial proportion of their effect on CAD and stroke 
(30.5%–77.2%) was mediated through BP regulation. Observational analyses further supported these findings.

Conclusions This study identifies key plasma proteins with potential causal roles in BP regulation and CVD risk, highlighting BP as a major 
mediator of their effects on CAD and stroke. These findings provide novel insights into the molecular mechanisms under
lying hypertension-related CVD and identify promising protein targets for further investigation.
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Structured Graphical Abstract

Is there a subset of plasma proteome shared between high blood pressure (BP), coronary artery disease (CAD), and stroke? How do 
these proteins influence cardiovascular risk through their effects on BP?

Mendelian randomization and genetic colocalization analyses identified four potentially causal protein candidates shared among BP, CAD, 
and stroke. The association of these four proteins (ACOX1, FGF5, FURIN, and MST1) was further supported by observational analyses. 
Mediation analysis suggested their effects on cardiovascular risk were substantially mediated through BP.

These findings identify novel therapeutic targets for dual BP and cardiovascular risk reduction to test in future trials.

Key Question

Key Finding

Take Home Message

AIS, ischaemic stroke; AS, all stroke; CAD, coronary artery disease; DBP, diastolic blood pressure; FDR, false discovery rate; GWAS, genome-wide association
studies; PP, posterior probability; SBP, systolic blood pressure; UKB, UK Biobank.
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Blood pressure, circulating plasma proteins, and cardiovascular diseases. AIS, all ischaemic strokes; AS, all strokes; CAD, coronary artery disease; 
DBP, diastolic blood pressure; FDR, false discovery rate; GWAS, genome-wide association studies; MR, Mendelian randomization; PP, posterior 
probability; PPP, Pharma Proteomics Project; SBP, systolic blood pressure; UKB, UK Biobank.
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Introduction
Elevated blood pressure (BP) is a leading modifiable risk factor for pre
mature death, cardiovascular disease (CVD), and all-cause mortality, af
fecting an estimated 1.28 billion adults aged 30–79 years worldwide.1,2

Even small increases in BP are associated with a higher risk of CVD; for 
instance, each 10 mmHg increase in systolic blood pressure (SBP) is 
linked to a 45% higher risk of coronary artery disease (CAD) and 
∼65% higher risk of stroke.3,4

Substantial epidemiological evidence highlights shared lifestyle and 
genetic risk factors between BP and CVD. However, the molecular 

pathways linking elevated BP and its progression toward CVDs remain 
incompletely understood. Elucidating these pathways is crucial for iden
tifying new therapeutic targets and developing more effective strategies 
to mitigate the burden of BP-related CVD. Proteomics, the rapidly 
evolving field of studying proteins at large scale, offers a powerful ap
proach to uncovering these pathways by identifying molecular targets 
that may serve as key regulators of cellular signalling and function and 
represent a major source of therapeutic targets for many diseases.5,6

In the context of BP, they may act as mediators of high BP (e.g. through 
vasoconstriction or vascular remodelling) or as plasma-based markers 
of cellular dysfunction linked to hypertensive physiology. Investigating 
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the proteomic landscape of BP and its overlap with CVD could, there
fore, provide critical insights into the molecular determinants and path
ways involved in BP regulation and its subsequent effect on CVDs7–10.

In this study, we systematically evaluated the proteomic determi
nants of BP through a comprehensive proteome-wide Mendelian 
randomization (MR) analysis. MR leverages genetic variants as instru
mental variables (IVs) to assess potential causal relationships between 
exposures (e.g. protein abundance) and outcomes (e.g. BP and CVD). 
This approach is analogous to randomized controlled trials, as genetic 
variants are randomly allocated at conception, helping to mitigate con
founding and reverse causation.11 Recent large-scale proteogenomic 
studies have identified thousands of genetic variants associated with 
protein abundance (protein quantitative trait loci, or pQTLs), offering 
a unique opportunity to apply MR to investigate the causal roles of 
plasma-based markers in disease pathways.12 To further investigate 
whether the plasma-based proteomic determinants of BP are also asso
ciated with CVDs, we extended our analysis to include CAD and stroke 
and performed network MR to assess the potential mediating role of BP 
in linking BP-associated proteins to CVDs. Extensive downstream ana
lyses, including Bayesian colocalization, observational analysis using Cox 
regression models, and phenome-wide association studies (PheWAS), 
were applied to substantiate the robustness of our findings and their 
relevance to other outcomes. Overall, our work prioritizes plasma- 
based biomarkers for BP-related CVDs, enhances the understanding 
of their molecular underpinnings, and informs the development of im
proved prevention and treatment strategies to reduce the CVD burden 
through BP management.

Methods
As outlined in Figure 1, we began with a proteome-wide MR analysis using 
cis-pQTLs for 2923 plasma proteins to assess their potential causal effects 
on SBP and DBP. Genetically predicted proteins showing strong associa
tions with BP were then evaluated for potential causal effects on CAD 
and stroke subtypes using the same MR framework. For genetically pre
dicted proteins associated with both BP and CVD outcomes, Bayesian co
localization was performed to assess whether shared genetic variants 
underlie these associations. Proteins with strong MR and colocalization evi
dence were carried forward for network MR to estimate the proportion of 
CVD risk mediated by BP. We triangulated these results with observational 
analyses in UK Biobank (UKB) participants, examining the associations be
tween protein levels, BP medication use, BP levels, and incident CVD 
events. Finally, PheWAS analyses were conducted for the lead genetic var
iants to assess pleiotropy across a broad range of traits.

Proteome-wide Mendelian randomization
Genome-wide association study data sources for proteins, 
blood pressure, and cardiovascular disease outcomes
Genetic variants associated with 2923 unique plasma proteins in up to 
∼54 219 participants, primarily of European ancestry, were obtained from 
publicly available genome-wide association study (GWAS) data through the 
UKB Pharma Proteomics Project (UKB-PPP).13 UKB-PPP is a precompeti
tive consortium of 13 biopharmaceutical companies funding the generation 
of blood-based proteomic data in a subset of UKB participant. Summary 
statistics of GWAS for all stroke (AS; N = 73 652 cases and 1 234 808 con
trols) and four subtypes including ischaemic stroke (AIS; N = 62 100 cases 
and 1 234 808 controls), cardioembolic stroke (CES; N = 10 804 cases 
and 1 234 808 controls), large artery stroke (LAS; N = 6399 cases and 
1 234 808 controls), and small vessel stroke (SVS; N = 6811 cases and 
1 234 808 controls) were obtained from the GIGASTROKE consortium.14

Genome-wide association studies data for CAD (N = 122 733 cases and 
N = 547 261 controls) were obtained from the meta-analysis by van der 

Harst et al.15 Further details of all GWAS datasets used in this analysis 
can be found in Supplementary data online, Table S1.

Previous BP GWAS16,17 included the UKB data and adjusted for body mass 
index (BMI) as covariate in the GWAS model, which may introduce bias due 
to sample overlap18 and collider bias in MR,19 respectively. To address these, 
we performed a GWAS of SBP [mean (SD) = 141.09 (20.64); mmHg] and 
DBP [mean (SD) = 84.28 (11.24); mmHg] in up to 410 170 Europeans from 
the UKB excluding the subsample of UKB-PPP [mean age (SD) = 56.7 
(8.01); N = ∼54 219]. Briefly, UKB is a prospective cohort study from the 
UK, which contains >500 000 volunteers between 40 and 69 years of age 
at inclusion. The study design, sample characteristics and genome-wide 
genotype data have been described previously.20 Following informed con
sent, participants completed a standardized questionnaire on life course ex
posures, medical history and treatments, and underwent a standardized 
portfolio of phenotypic tests including two BP measurements taken seated 
after a 2 min rest using an appropriate cuff and an Omron HEM-7015IT 
digital BP monitor. A manual sphygmomanometer was used if the standard 
automated device could not be employed. Two traits (SBP and DBP) were 
analysed as described previously.16 In brief, the mean SBP and DBP values 
were calculated from two automated (N = 418 755) or two manual (N =  
25 888) blood pressure measurements. For individuals with one manual 
and one automated blood pressure measurement (N = 13 521), the 
mean of these two values was used. For individuals with only one available 
BP measurement (N = 413), we used the single value. After calculating BP 
measurements, we adjusted for medication use by adding 15 and 
10 mmHg to SBP and DBP,16,17,21,22 respectively, for individuals reported 
to be taking BP-lowering medication (n = 94 289). The GWAS (without 
BMI adjustment) was performed using BOLT-LMM software,23 and quality 
control filters were applied as described previously.16 Next, we systemat
ically compared our BP GWAS with the one performed by Evangelou 
et al.16 to further validate our findings. We calculated the genetic correl
ation24 for SBP and DBP between the two GWAS datasets and observed 
a strong positive correlation for both traits: SBP (rg = 0.95, se = 0.004) and 
DBP (rg = 0.91, se = 0.005). These rg estimates demonstrate that the effect 
estimates from our BP GWAS (excluding the UKB-PPP cohort) were highly 
correlated with those reported in the existing BP GWAS. The studies used 
in our analysis were approved by their respective institutional review boards, 
and informed consent was provided by all participants.

Selection of cis-pQTLs as genetic instruments and 
Mendelian randomization analyses
To obtain genetic IVs for the 2923 plasma proteins,13 we extracted 
cis-acting biallelic single nucleotide polymorphisms (SNPs) (located within 
±1 megabase [mb] of the corresponding gene encoding the protein; defined 
as cis-pQTL) and minor allele frequency (MAF) > 0.01. Genetic instruments 
were further filtered by the strength of association (P < 5 × 10−8) and 
clumped at a pairwise linkage disequilibrium (LD) threshold of r2 < 0.001 
and a window of 10 000 kilobases (kb) using the TwoSampleMR R pack
age.25,26 For all MR and subsequent downstream sensitivity analyses, we uti
lized a randomly selected reference panel of 10 000 individuals of European 
ancestry from the UKB for generating instruments and 1000 Genomes 
European ancestry individuals (Phase 3) for clumping.27 This reference pa
nel provides a representative sample of the underlying population, given the 
substantial overlap between the GWAS we utilized and UKB participants, 
enabling precise LD estimation.

For MR causal estimates to be valid, the following assumptions must be 
met: the genetic instruments (i) are strongly associated with the exposure, 
(ii) are not associated with any potential confounder of the exposure– 
outcome association, and (iii) do not affect the outcome independently 
of the exposure. The inverse-variance weighted (IVW) method (for ≥2 
IVs) or the Wald ratio method (for <2 IVs) was used as the primary ap
proach for all MR analyses. Briefly, the Wald ratio method estimates the 
causal effect by taking the ratio of SNPs effect on outcome (BP and CVD 
outcomes) to SNPs effect on exposure (protein abundance), while the 
IVW method performs a weighted linear regression on the variant-specific 
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ratio estimates by inverse-variance weighting and has higher statistical 
power when all IVs used are valid instruments.26 All SNPs effects were de
rived from GWAS summary statistics described in the previous section. For 
traits instrumented by >3 IVs, we performed Cochran’s Q test to detect 
the presence of heterogeneity. Benjamini–Hochberg false discovery rate 
(FDR) correction was applied and an FDR-corrected P < .05 was consid
ered statistically significant.28 For continuous outcomes, beta estimates 
were obtained directly from the MR estimates, while for dichotomous out
comes, odds ratios were derived by exponentiating the MR estimates. For 
significant associations with no evidence of heterogeneity (FDR-corrected 
P < .05, Cochran’s Q > 0.05), we included additional criteria to increase 
the reliability of the instruments and comply with the MR assumptions. 
We therefore excluded proteins from downstream analyses when (i) bidir
ectional MR29 or Steiger filtering approach30 showed evidence for reverse 
causality (i.e. genetic predisposition to outcome has a putative causal effect 
on the protein) and (ii) F-statistic was lower than 10 from the MR analysis to 
avoid potential weak instrument bias.31

Network Mendelian randomization and proportion 
mediated
To investigate the potential mediating effects of BP on the protein-CAD/ 
stroke associations, we applied a two-step MR strategy (network MR).32

Specifically, we performed two-sample cis- and univariable MR analyses to 

investigate the potential causal effect of proteins on BP (β1), the potential cau
sal effect of BP on CAD/stroke (β2), and the potential causal effect of proteins 
on CAD/stroke (βTE). The proportion mediated was then estimated as β1 ×  
β2/βTE

32 and the standard error and 95% confidence interval (95% CI) were es
timated using the delta method.32 We verified that β1, β2, and βTE were in the 
same effect direction to avoid inconsistent mediation.33

Genetic colocalization
To investigate whether the genetic associations between proteins, BP, and 
CVD outcomes share the same causal variants and are not confounded by 
LD, we employed a Bayesian colocalization approach.34 The colocalization 
analysis was performed on the pre-defined cis-region (i.e. ±1mb) of the cor
responding coding gene, with low frequency and rare variants (MAF <0.01) 
excluded. Priors were set as default that any SNP within the colocalization 
window was exclusively associated with the two traits with the probability 
of 1 × 10−4 and associated with both traits with the probability of 1 ×  
10−5.35 Each configuration of the two traits could be assigned to one of the 
hypotheses; hypothesis 0: no association, hypothesis 1 and 2: only one trait 
is associated, hypothesis 3: both traits are associated but with different causal 
variants, and hypothesis 4: both traits are associated and share the same causal 
variant. A colocalization posterior probability of hypothesis 4 (PP) higher than 
70% was considered evidence that the 2 traits colocalize in the region.36 The 
colocalization was conducted using the ‘coloc’35 R packages.

Figure 1 Study design. (A) Conceptual framework of Mendelian randomization. (B) Overview of the study design and main findings. (C ) Venn diagram 
showing colocalized BP-associated proteins shared with CAD and stroke. AIS, all ischaemic strokes; AS, all strokes; CAD, coronary artery disease; CES, 
cardioembolic stroke; LAS, large artery stroke; SVS, small vessel stroke
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Furthermore, we used multi-trait colocalization to examine colocaliza
tion across the plasma protein level, BP, and CVD.37 The window for the 
multi-trait colocalization was set the same as the conventional colocaliza
tion method mentioned previously. Default priors were set so that any vari
ant within the colocalization window had a 1 × 10⁻⁴ probability of being 
associated with one trait, 1 × 10⁻⁶ for two traits, and 1 × 10⁻⁷ for all three 
traits.37 The multi-trait colocalization PP >70% was considered as strong 
evidence of colocalization, whereas the colocalization PP > 50% was con
sidered suggestive evidence of colocalization.36 The multi-trait colocaliza
tion analysis was conducted using the ‘moloc’ R package.37

For gene dense regions (i.e. proteins whose cognate genes are in close 
proximity), we performed PairWise Conditional and Colocalisation 
(PWCoCo)38 to address the single causal variant assumption of colocaliza
tion and examine independent colocalization of non-primary signals. These 
regions were defined among protein candidates associated with both BP 
and CVD outcomes as those where a gene’s ± 500 kb window overlaps 
with the ±500 kb window of another gene on either side of the coding re
gion (N = 22). Additionally, to further mitigate bias due to pleiotropy, we 
cross-referenced the genotype-tissue expression (GTEx)39 and Open 
Targets Genetics portal40 for proteins which we prioritized and we deter
mined whether the cis-pQTLs for these proteins (i.e. the variants used as 
genetic instruments for MR) were also cis-eQTLs (i.e. whether the same 
genetic variant affects the cognate gene’s expression) for the corresponding 
gene. Following this, pQTLs were excluded if they were identified as pleio
tropic with no evidence of being an eQLT.

Protein–protein interactions
To identify BP relevant pathways and to summarize proteins associated 
with BP and CVD in functional networks, we submitted genetically pre
dicted proteins associated with both BP and CVD outcomes from the 
proteome-wide MR to the Search Tool for the Retrieval of Interacting 
Genes (STRING) database, version 12.0 to construct protein-protein inter
action (PPI) networks.41 In the STRING database, only experimentally vali
dated interactions reaching a confidence threshold of 0.4 were considered. 
We next identified communities present in the derived network using the 
Leiden clustering algorithm.42 Enrichment analysis of proteins included in each 
community was conducted with Enrichr,43 using an FDR-corrected P < .05 to 
declare significant enrichment results.

Observational analyses
We triangulated MR findings with observational evidence obtained from 
UKB. To examine associations between BP treatment and plasma proteins 
with evidence of causality from MR analysis on BP, we leveraged the proteo
mics data from UKB individuals with hypertension (hypertension diagnosis 
prior to blood sample collection or by the use of BP medication at collec
tion). Hypertension was defined based on the CALIBER code list for hyper
tension in general practitioner records or hospital episode statistics.44

Individual protein levels were adjusted by age and sex, and the residuals 
were rank inverse normalized. T-tests were used to compare adjusted pro
tein levels between hypertensive individuals with and without prescribed BP 
medication. To isolate the effect of BP medication, we conducted sensitivity 
analysis excluding individuals taking medication for high cholesterol and dia
betes. False discovery rate correction was applied, and an FDR-corrected 
P < .05 was considered statistically significant.

We also assessed the association between each of the proteins that 
showed strong evidence of causality and colocalization for BP and CVD 
with BP levels (cross-sectional analysis) and incident CVD (longitudinal ana
lysis). To study the association between protein levels and BP, we used sep
arate linear regression analyses with standardized levels of each protein of 
interest as the predictor and BP measurements as the outcome. 
Standardized beta coefficients for the association between protein levels 
and SBP are reported. Cox proportional hazard models were used to cal
culate hazard ratios between standardized protein levels and time-to-event 
of composite CVD (CAD and stroke), as well as stroke and CAD 

separately. For both linear regressions and Cox regressions, we ran sequen
tial models adjusted for (a) age and genetic sex; (b) Townsend deprivation 
index, body mass index, smoking status; (c) LDL and HDL cholesterol, dia
betes and high cholesterol medication. Separate models were run for SBP 
and DBP. Diagnosis of CAD and stroke was defined by patient linked gen
eral practitioner records (readcode), hospital episode statistics (ICD-10) 
and death records (ICD-10) within the June 2023 UKB release using the 
CALIBER code list44 for stroke and CAD code list from Patel et al.45

Participant follow-up began at the date of blood sample collection and 
time-to-event was set at whichever occurred first; the first instance of diag
nosis, death of the participant, or censoring date (June 2023). Participants 
with prevalent CVD at baseline were excluded from Cox regression 
analyses.

Phenome-wide association study
We conducted PheWAS analyses to assess associations linked to lead 
cis-pQTLs across various traits beyond cardiovascular disease and to 
identify potential opposing effects with other phenotypes. We con
ducted these analyses in the UKB with participants of European ancestry 
for the lead cis-pQTLs of proteins that showed strong evidence of causality 
(FDR <0.05) and colocalization (PP >70%). One individual from each pair of 
relatives (kinship coefficient >0.0884) was randomly excluded. The final sample 
consisted of 424 439 individuals. Cases and controls were defined using the 
International Classification of Diseases 9th (ICD-9) or 10th (ICD-10) 
Revision codes, derived from the inpatient Hospital Episode Statistics 
(HES) records, and translated into phecodes according to the PheWAS R 
package.46 Controls were identified as individuals without records of the re
spective phecode. We restricted our analysis to phecodes with at least 200 
cases, as suggested previously.47 Logistic regression models were employed, 
adjusting for age, sex, and the first four genetic principal components.

Software
All statistical analyses were performed with R open-source software (ver
sion 4.3.2).48 Data harmonization, clumping, and primary MR were con
ducted with TwoSampleMR package (version 0.5.8).25 We used ‘coloc’ 
package (version 5.2.3)34 for conventional colocalization and ‘moloc’ for 
multi-trait colocalization.37 Genetic correlation was estimated using 
LDSC.24 Region genomic plots for conventional colocalization were created 
with the locuscomparer package (version 1.0.0)49 and gassocplot package 
(version 1.0; https://github.com/jrs95/gassocplot).

Results
Of the 2 923 measured proteins, cis-region genetic association summary 
statistics (cis-pQTLs; P < 5 × 10−8) were available for 2 007 circulating 
proteins after removal of proteins falling within the major histocompati
bility complex region (due to the complex LD in this region; N = 34).

Genetically predicted proteins associated 
with blood pressure and cardiovascular 
disease
Proteome-wide cis-MR analysis identified 242 genetically predicted 
proteins associated with SBP or DBP (185 for SBP, 137 for DBP; 
FDR < 0.05) with no evidence of heterogeneity (Cochran’s Q > 0.05) 
or evidence for reverse causality as assessed by bidirectional MR or 
Steiger filtering (see Supplementary data online, Tables S2–S4, Figure 2).

Of the 242 BP-associated genetically predicted proteins, 48 (19.8%) 
were also associated with either CAD (42 proteins) or stroke (17 pro
teins) using the same criteria. Of these, 37 showed consistent direction 
of effects between BP and CVD traits (Figure 2C and D; Supplementary 
data online, Figures S1–S10; Supplementary data online, Tables S5–S17). 
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Figure 2 Plasma protein as potential causal candidates for systolic blood pressure (SBP) and diastolic blood pressure (DBP) and their effects on CAD 
and stroke outcomes. Volcano plots illustrating the potential causal effect (IVW method or Wald ratio method) of each genetically predicted protein on 
(A) SBP; (B) DBP. The top 20 candidates ranked by FDR-corrected P < .05 are labelled in the volcano plots; (C ) Heatmap showing the proteins that 
passed sensitivity filters for SBP and their potential causal effect on cardiovascular outcomes; and (D) Heatmap showing the proteins that passed sen
sitivity filters for DBP and their potential causal effect on cardiovascular outcomes. Dots in the cell represent a protein-outcome association that passes 
the sensitivity filters (FDR < 0.05, Cochran’s Q > 0.05, no reverse causation). Effect size on BP measures are in mmHg. AIS, all ischaemic strokes; AS, all 
strokes; CAD, coronary artery disease; CES, cardioembolic stroke; LAS, large artery stroke; SVS, small vessel stroke
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In protein–protein interaction analyses, these proteins highlighted 
crosstalk between pathways including STK signalling, angiopoietin sig
nalling, extracellular matrix (ECM) remodelling and angiogenesis (see 
Supplementary data online, Figure S11; Supplementary data online, 
Table S18).

Subsequent colocalization analysis for those 48 proteins highlighted 
13 proteins with strong evidence of sharing a single causal variant with 
SBP or DBP (PP ≥ 70%; Supplementary data online, Table S19). Of 
these, 5 proteins (ACOX1, BRAP, ERP29, FGF5, and FURIN) also 
showed strong colocalization with CAD and/or stroke and all had con
cordant direction of effects for BP and CAD and/or stroke (see 
Supplementary data online, Figures S12 and S13; Supplementary data 
online, Table S20). For gene dense regions (see Methods), we also per
formed PWCoCo which highlighted a conditionally independent signal 
(rs34484573) for MST1 with strong evidence of colocalization with SBP 
(PP = 76.4%) and CAD (PP = 96.5%; Figure 3; Supplementary data 
online, Table S21). Lead cis-pQTLs of these 6 proteins (including 
MST1) with robust colocalization evidence were also cis-eQTLs for 
cognate gene (GTEx) except for BRAP and ERP29, indicating that the 
genetic effect on protein abundance is at least partially mediated 
through changes in gene expression at the mRNA level (see 
Supplementary data online, Table S22). BRAP and ERP29 were ex
cluded from downstream analysis. Multi-trait colocalization results for 
these signals for BP and CVD outcomes are outlined in 
Supplementary data online, Figures S14–S18 and Supplementary data 
online, Table S23. For example, FGF5 and ACOX1 showed strong evi
dence of colocalization with BP and CAD (PP > 95% and PP > 70%, re
spectively), while FURIN with BP and AS (PP > 79%). The SNPs being 
utilized as IVs in the proteome-wide MR analyses for the 4 prioritized 
proteins are listed in Supplementary data online, Table S24.

Replication of blood pressure–associated 
proteins in ICBP consortium
We next sought to replicate the MR results of the 4 proteins in inde
pendent data from ICBP. Among them, the potentially causal effects 
of 3 prioritized proteins (ACOX1, FGF5, and FURIN) were replicated 
using an independent BP GWAS (ICBP consortium with N = 299 024 
for DBP and n = 287 245 for SBP).50 MST1 showed comparable effect 
estimate and consistent direction of effect, but did not reach nominal 
significance (P = .06) (see Supplementary data online, Figure S19).

Mediation analysis
The four proteins (ACOX1, FGF5, FURIN, and MST1) that showed 
strong evidence of sharing a single causal variant through colocalization 
with both BP and CVDs in the previous step (β1 and βTE) were carried 
forward for the mediation analysis. Higher genetically predicted SBP 
and DBP were associated with a higher risk of CAD and stroke (β2; 

Supplementary data online, Figures S20–S22; Supplementary data 
online, Table S25). Subsequent network MR (β1 × β2/βTE) suggested 
that genetically predicted SBP and DBP potentially mediate the effect 
of proteins on CAD and stroke. For example, we estimated that 
72.6% [95% CI = (49.2%, 96.1%)] of the effect of FGF5 on CAD may 
be mediated through SBP (see Supplementary data online, Table S26; 
Figure 4), and 77.2% [95% CI = (31.9%, 100%)] of the effect of FGF5 
on AIS mediated through SBP.

Triangulation with observational data
In the comparative analysis of 35 shared proteins with consistent direc
tion of effect between the BP and CVD traits identified through the MR 

analysis, we found that 21 protein levels were associated with BP treat
ment (Figure 5). Regarding the four prioritized proteins, individuals on 
BP medications had significantly lower circulating levels of FURIN and 
MST1, compared to individuals with hypertension but not on BP medi
cation, even after excluding individuals with diabetes or lipid-lowering 
medications (see Supplementary data online, Table S27; Figure 5).

Observational analysis using linear regression models revealed that all 
four proteins with robust evidence of causality and colocalization for BP 
and CVD were significantly associated with baseline SBP in models ad
justed for multiple potential confounders (Figure 3D; Supplementary 
data online, Table S28). Also, in Cox proportional hazard models, all 
proteins were associated with CVD outcomes in minimally adjusted 
models (age and sex) and of them FGF5, FURIN and MST1 were asso
ciated with higher risk of composite CVD in subsequent models including 
a range of cardiovascular risk factors (Figure 3A–C, see Supplementary data 
online, Tables S29 and S30 for CVD subtypes).

Phenome-wide association studies for 
genetic variants driving Mendelian 
randomization and colocalization
We also performed a PheWAS across 845 phenotypes, focusing on the 
lead cis-pQTLs of the four proteins prioritized in colocalization analysis. 
All examined lead cis-pQTL showed associations with a range of cardio
vascular phenotypes and cardiovascular risk factors without evidence 
for detrimental or adverse effects in other examined phenotypes (see 
Supplementary data online, Figures S23 and S24 and Supplementary 
data online, Table S31).

Discussion
Here, we present a comprehensive framework triangulating genetic and 
observational analyses highlighting the proteomic landscape of BP and 
its link to CVD. Through proteome-wide MR and Bayesian colocaliza
tion analysis, we prioritized 12 circulating plasma proteins with a poten
tial causal role in BP regulation. Among these, genetically predicted 
levels of four proteins—ACOX1, FGF5, FURIN, and MST1—also de
monstrated evidence of potential causal associations with CAD and/ 
or stroke, supported by observational analysis. Mediation analyses fur
ther indicated that BP acts as a critical intermediary, with a substantial 
proportion of the effect of these proteins on CAD and/or stroke 
mediated through BP levels (Structured Graphical Abstract).

Our findings highlight acyl-CoA oxidase 1 (ACOX1) as a protein 
consistently associated with both BP and CAD in genetic and observa
tional analysis, though the observational associations were attenuated 
after adjusting for other cardiovascular risk factors. ACOX1 is an en
zyme primarily responsible for the oxidation of very-long-chain fatty 
acids in the peroxisome, and recent animal and human data supports 
its role in obesity, lipid metabolism, and insulin resistance.51 A liver- 
specific knockout of ACOX1 has been reported to promote resistance 
to diet-induced obesity, inflammation, and insulin resistance, further re
inforcing its metabolic significance.51 Additionally, common genetic var
iants in ACOX1 have been associated with SBP52 and lipid levels,53

aligning with our findings. Collectively, evidence suggest that ACOX1 
likely plays a pivotal role in cardiovascular pathology, with its effects 
partly mediated through SBP regulation.

FURIN is a peptidase that activates key proteins involved in inflam
mation, vascular remodelling, and lipid metabolism.54,55 Growing 
evidence supports FURIN’s role in CVD, with support from obser
vational, proteogenomic, and basic science studies.56,57 FURIN is 
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expressed in arterial tissue, and cis-pQTL SNPs have been linked to cor
onary heart disease (CHD) and cardiovascular risk factors, further impli
cating its role in vascular health.57 Here we provide additional evidence 
supporting a potential causal association between FURIN and stroke, 
with approximately 40% of its effect mediated through BP regulation. 
Notably, these associations were also observed in a range of observa
tional analyses in agreement with previous evidence.58 FURIN is current
ly being explored as a drug target, with several phase 1 and 2 clinical trials 
investigating FURIN inhibitors for cancer immunotherapy showing 
promising efficacy and a good safety profile.59 Our PheWAS analysis 
supports the safety of targeting FURIN, though no clinical trials have 
yet investigated its therapeutic potential for CVD. The present evidence 
and insights from previous trials may further inform the development of 
furin-targeted treatments and therapeutic interventions for CVD.

FGF5 (fibroblast growth factor 5) is a well-established hypertension 
susceptibility gene, with genetic variants linked to elevated SBP, DBP, 
and stroke.60,61 Our findings further support a potential causal link be
tween increased plasma FGF5 levels, BP, and subsequent CHD and is
chaemic stroke, aligning with previous MR studies and reinforcing 
observational evidence on FGF5 plasma levels. Fibroblast growth 

factors have been extensively studied as potential therapeutic targets 
for cardiovascular disease, primarily due to their metabolic and angio
genic effects. However, FGF5 has received comparatively less attention. 
While non-BP-related mechanisms, such as cardiovascular remodelling, 
have been proposed to explain FGF5’s role in CVD,62 our findings sug
gest that a significant proportion of its effect on CHD and ischaemic 
stroke is mediated through BP regulation.

Macrophage stimulating 1 (MST1), a key component of the Hippo 
pathway, was highlighted through MR, colocalization, and observational 
analysis. MST1 activation has been implicated in dilated cardiomyop
athy, cardiomyocyte death following ischaemic injury, and inhibition 
of cardiac growth.63,64 Experimental studies further suggest that 
MST1 knockdown reduces atherosclerotic plaque formation and im
proves metabolic health, including protection against non-alcoholic 
fatty liver disease.65,66 Our study provides evidence of a potentially cau
sal effect of MST1 on BP, a link that has been little explored. 
Additionally, our findings further suggest that MST1’s effect on CAD 
may be mediated by its detrimental influence on BP levels, reinforcing 
its role as a potential contributor to vascular dysfunction. Although 
MST1-targeting drugs remain in the preclinical stage, inhibitors have 

Figure 3 Mendelian randomisation analyses for the effect of genetically predicted plasma protein levels on cardiovascular outcomes and blood pres
sure measures. Forest plots illustrating the effect of prioritized plasma proteins (FDR-corrected P < .05 and PPH4 ≥ 70%) on (A–C) cardiovascular out
comes; and (D) blood pressure. Odds ratio refers to the genetically predicted effects of plasma protein levels on outcomes of interest, estimated from 
MR analysis. Effect size on BP measures are in mmHg. Hazard ratio (HR) was estimated from the Cox proportional hazard models in the observational 
analysis; ‡Represents a colocalized signal from the PWCoCo analysis; *Represents significantly associated proteins in the observational analysis
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Figure 5 Volcano plots comparing circulating protein levels in hypertensive individuals within UK Biobank separated by BP medication usage. 
Candidates ranked by FDR-corrected P < .05 are coloured and labelled in the volcano plots

Figure 4 Mediation analyses showing estimated proportion of βTE from plasma proteins on CAD and stroke mediated through BP. (A) ACOX1 effect 
on CAD potentially mediated by SBP. (B) FGF5 effect on CVDs potentially mediated by SBP and DBP. (C ) FURIN effect on CVDs potentially mediated 
by SBP and DBP. (D) MST1 effect on CAD potentially mediated by SBP. All effects were estimated from the MR analysis. (E) Effect of BP on CVDs from 
the network MR. Effect estimates for βTE were in logOR units. Proportion mediated was estimated as β1 × β2/βTE. 95% confidence intervals were 
derived using the delta method
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shown potential in suppressing MST1 activity.67 Given its broad physio
logical impact, further research is needed to clarify MST1’s therapeutic 
potential in cardiovascular health.

Strengths and limitations
Our study has several strengths. First, to the best of our knowledge, this 
is one of the first studies to examine the potential mediating role of BP 
in the relationship between plasma proteins and CVDs, utilizing 
large-scale genomics data. Second, we have integrated evidence from 
MR, colocalization, observational analysis, and PheWAS analyses to 
strengthen the robustness of our findings. Some limitations require 
careful consideration in interpretation of our findings. First, the 
summary-level data sources used are primarily from participants of 
European ancestry, which limits the generalizability of our findings to 
other populations. Second, several cis-pQTLs used in the MR analysis 
could be protein-altering variants or in high linkage disequilibrium 
with these variants, potentially leading to an aptamer binding effect. 
Among the proteins we prioritized, we noted that cis-pQTLs used as 
genetic instruments for ACOX1 were in high LD (r² > 0.8; 1000 gen
omes reference panel) with missense or stop-gained variants. 
However, for ACOX1, the lead cis-pQTL (rs10852766) is also a 
cis-eQTL (eQTLGen, Open Target Genetics), indicating that it affects 
ACOX1 expression levels independent of aptamer binding. This may im
ply that potential causal associations between ACOX1 and CAD may 
still hold true. Third, despite efforts to avoid sample overlap, some par
ticipants from the CAD GWAS may have also contributed to the 
UKB-PPP, potentially leading to attenuated causal effect estimates. 
We mitigated this bias by consistently using genetic instruments with 
F-statistics >10 throughout the study.

In summary, our study provides strong evidence for shared 
proteomic signatures associated with BP, CAD, and stroke out
comes, highlighting proteins that may affect cardiovascular risk 
through modifiable risk factors such as BP. Our findings underscore 
the critical role of BP as a mediator in the relationship between cir
culating proteins and cardiovascular outcomes, particularly for 
FGF5, FURIN, ACOX1, and MST1. These proteins represent prom
ising targets for further research, with potential implications for no
vel therapeutic interventions aimed at BP regulation and CVD 
prevention. Further research should aim at validating those findings 
and exploring mechanistic pathways to aid the translational poten
tial of those discoveries.
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