Precision medicine requires precision proteomics: Tes precision proteomics: Moded from https://academic.oup.com/cardioop discordance between proteomic and clinical assays in UK Biobank

Bhawana Singh (1) 1, Ioanna Tzoulaki (1) 2,3, and Manuel Mayr (1) 1,4*

1 National Heart and Lung Institute, Imperial, 86 Wood Lane, London W12 0BZ, UK; 2 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; 3Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; and Division of Cardiology, Medical University of Vienna, Vienna, Austria

Received 22 July 2025; accepted 15 September 2025; online publish-ahead-of-print 26 September 2025

The UK Biobank (UKB) offers an unparalleled open access multi-omics resource, including 2923 plasma proteins measurements in 54219 participants using the Olink Explore 3072 platform. 1 It also provides protein quantitative trait locus (pQTL) data to support proteo-genomic analyses and causal inference. However, affinity-based proteomics platforms, such as Olink and SomaScan, can yield discordant results. 2,3

Apolipoprotein B (ApoB) and lipoprotein(a) [Lp(a)] are known major risk factors for atherosclerotic cardiovascular diseases 4-6. Yet, UKB studies using Olink-based apolipoprotein measurements and pQTLs have failed to confirm these associations. ^{7,8} For example, Deng, Y.-T. et al. ⁷ reported that apolipoprotein(a) [LPA]—the characteristic apolipoprotein of Lp(a)—was not significantly associated with the incidence of myocardial infarction (MI) after correcting for multiple testing [hazard ratio: 1.07 (1.00–1.15), nominal P-value: 0.035 Bonferroni-corrected threshold P-value < 1.7e⁻⁵, based on

Even ApoB measured by Olink shows no association with 10-year incident major cardiovascular events in UKB, including MI, cardiac death, and cerebral infarction (Figure 1A). As previously reported, the Spearman correlation between Olink LPA and clinical assays for Lp(a) in UKB is high $(\rho = 0.82)$ but poor $(\rho = 0.08)$ for ApoB¹ (Figure 1B). This highlights that genuine treatment targets can be overlooked when relying solely on affinitybased platforms. The Olink workflow requires dilutions of up to 1:100 000 to avoid a plateau effect for highly abundant plasma proteins. Yet, ApoB was measured at a 1:1000 dilution. Affinity-based proteomics platforms may also be affected by isoforms, post-translational modifications, or hydrophobicity-related losses, all contributing to low correlation.

Although, the overall correlation between Olink LPA and clinical Lp(a) was high $(\rho = 0.82)$, stratifying the UKB cohort by the clinical reference ranges revealed substantial variability. In UKB participants with low Lp(a) (<75 nmol/L, $N = 25\,900$) the correlation remained strong ($\rho = 0.79$, P-value <2.2e⁻¹⁶). However, it dropped markedly in the grey-zone (\geq 75 nmol/L, \leq 125 nmol/L, N = 3504) and the high (>125 nmol/L, N = 3716) Lp(a) groups, with correlations of 0.12 (P-value = 1.4e-12) and 0.17 (P-value $< 2.2e^{-16}$), respectively (Figure 1C). This Olink LPA example demonstrates that a high overall correlation does not preclude dynamic range limitations of the assay.

Based on the clinical threshold for Lp(a), 78% of participants (N = 25900) had low levels (<75 nmol/L), \sim 11% (N = 3716) high (>125 nmol/L), and Olink LPA measurements were divided into eleven quantile groups, each representing ~11% of the data. Participants in the top 11% (highest values) were classified as 'Upper', the next 11% as 'Mid', and the remaining 78% & as 'Lower'. A Sankey diagram comparing clinical Lp(a) thresholds with a quantile-based Olink LPA thresholds revealed substantial misclassification, particularly among higher-risk individuals (Figure 1D). Only 42% of participants with high Lp(a) and 29% in the grey-zone were correctly classified.

We highlight notable gaps in the Olink assay for quantifying apolipoproteins. Beyond the poor correlation for ApoB, the example of clinical Lp(a) vs. Olink LPA shows that discordance occur despite strong overall correlation. Individuals with low Lp(a) were reliably quantified, whereas higherrisk groups were underestimated. In these groups, Lp(a) concentrations exceeded the measurement range, and quantitation became imprecise due to a plateau effect.

While cis-pQTLs are often considered as evidence that an affinity-based proteomics assay detects the intended protein, this interpretation requires caution. Even a single amino acid substitution can alter epitopes and impair $\frac{57}{80}$ binding affinity. Unless binding affinity is demonstrated to be unaffected by $\frac{57}{80}$ genetic variants, attributing a pQTL to genuine variation in protein abundance variance remains uncertain. Besides epitope effects, cross-reactivity, limited sensitivity, and narrow dynamic range can all impair assay performance. Robust validation requires orthogonal methods—such as targeted mass spectrometry with reference peptides, validated immunoassays, and depletion and spike-in experiments—rather than reliance on genetic ²² evidence alone. Replication in independent cohorts provides supportive evidence, but repeating measurements on the same affinity-based platform. only reproduces its limitations.

The UKB continues to lead the way in adopting cutting-edge technologies to advance our understanding of human health and disease. Olink proteomics will be expanded to all participants, while SomaScan in 50 000 participants will enable cross-platform validation.³ Gaps in apolipoprotein quantification highlight the need to filter out less reliable assays.^{9,10} Looking ahead, incorporating targeted mass spectrometry could further and spectrometry could further improve the depth and precision of protein quantification. Heavy labelled- $\begin{cases} \begin{cases} \begin{ca$ proteotypic peptides, which differ in mass from endogenous and, would provide a reference method to assess the quality of affinity binders, thereby strengthening the translational potential of UKB proteomics data.

^{*} Corresponding author. Tel: +44 20 7594 9909, E-mail: m.mayr@imperial.ac.uk

[©] The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology.

B. Singh et al.

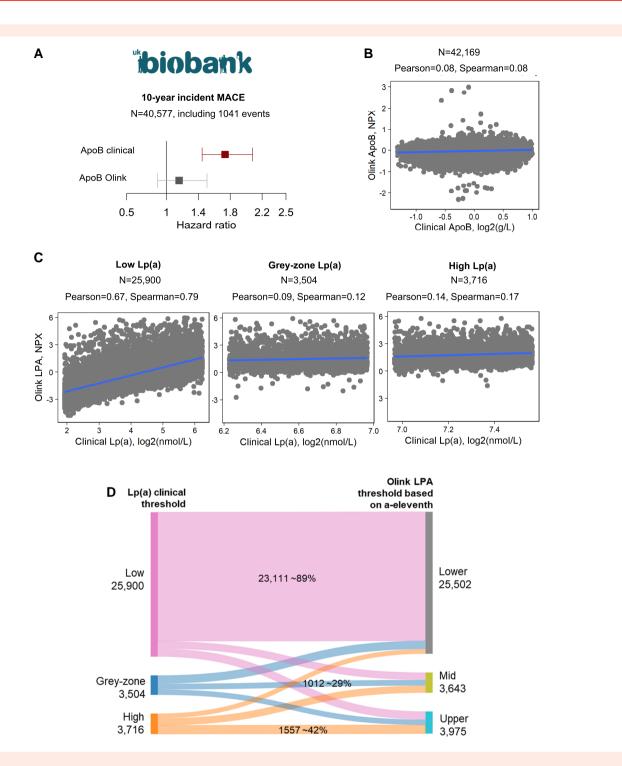


Figure 1 Key apolipoproteins for atherosclerotic cardiovascular disease in UK Biobank. (A) Forest plot shows age- and sex-adjusted hazard ratio (HR) with 95% confidence interval computed using Cox proportional hazards model. HR is plotted for 10-year incident major cardiovascular events (MACE) association with apolipoprotein B (ApoB) clinical and Olink assays in $N = 40\,577$ participants. Clinical ApoB values were log2 transformed. Individuals with prior or at baseline atherosclerosis (ICD10: I70), or ischaemic heart diseases including myocardial infarction (ICD10: I20-I25) or cardiac arrest including sudden cardiac death (ICD10: I46) or cerebral infarction (ICD10: I63) were excluded from analysis. Grey indicates P-value >0.05, and maroon indicates P-value < 0.05. (B) Scatterplot illustrates the correlation between ApoB measured by Olink (y-axis) and clinical (x-axis) assays in $N = 42\,169$ participants. The line in the scatterplot shows fitted linear regression. (C) Scatterplot displays the correlation between lipoprotein(a) [Lp(a)] clinical assay (x-axis) and apolipoprotein(a) [LPA] Olink assay (y-axis) across participants with low (<75 nmol/L, $N = 25\,900$), grey-zone (≥75 nmol/L and ≤ 125 nmol/L, N = 3504), and high (>125 nmol/L, N = 3716) Lp(a). (D) Sankey diagram shows the reclassification of clinical Lp(a) threshold by Olink LPA based on a-eleventh quantile. The text in the flow highlights the percentage classified correctly by Olink LPA. Participants who had withdrawn or had missing values for Olink or clinical assays were excluded. Only baseline measurements were used for this analysis conducted under UKB research application 221022102. Statistical analysis and associated figures were generated with R version 4.2.2.

Authors' contributions

B.S. and M.M.: Study conception; B.S.: data analysis, interpretation, and draft of the article: M.M.: critical revision and final approval: I.T.: UKB resource and manuscript review: B.S. and M.M. had primary responsibility towards final content. All the authors have read and approved the final manuscript.

Acknowledgements

None declared.

Conflict of interest, none declared.

Funding

This work was supported by British Heart Foundation [CH/16/3/32406, RG/ F/21/110053 to M.M. and RE/24/130023 to M.M. and I.T.]. M.M. is a BHF Chair Holder with British Heart Foundation programme grant support (CH/16/3/32406, RG/F/21/110053). M.M. is also supported by the excellence initiative VASCage (Centre for Promoting Vascular Health in the Ageing Community, project number 868624) of the Austrian Research Promotion Agency FFG (COMET programme-Competence Centres for Excellent Technologies) funded by the Austrian Ministry for Transport, Innovation and Technology; the Austrian Ministry for Digital and Economic Affairs; and the federal states Tyrol (via Standortagentur), Salzburg, and Vienna (via Vienna Business Agency). M.M. and I.T. are supported by the Imperial BHF Research Excellence Award (4) (RE/24/130023).

Data availability

Underlying clinical and Olink data are available through the UK Biobank Research Analysis Portal (https://www.ukbiobank.ac.uk/enable-yourresearch).

References

1. Sun BB, Chiou J, Traylor M, Benner C, Hsu Y-H, Richardson TG, Surendran P, Mahajan A, Robins C, Vasquez-Grinnell SG, Hou L, Kvikstad EM, Burren OS, Davitte I, Ferber KL, Gillies CE, Hedman ÅK, Hu S, Lin T, Mikkilineni R, Pendergrass RK, Pickering C, Prins B,

- Baird D, Chen C-Y, Ward LD, Deaton AM, Welsh S, Willis CM, Lehner N, Arnold M, Wörheide MA, Suhre K, Kastenmüller G, Sethi A, Cule M, Raj A, Kang HM, Burkitt-Gray L, Melamud E, Black MH, Fauman EB, Howson JMM, Kang HM, McCarthy MI, Nioi P, Petrovski S. Scott RA. Smith EN. Szalma S. Waterworth DM. Mitnaul LI. Szustakowski ID. Gibson BW, Miller MR, Whelan CD. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 2023;622:329-338.
- 2. Singh B, Mayr M. Enhancing cardiovascular risk prediction through proteomics? Cardiovasc Res 2024;120:e2-e4.
- 3. Joshi A, Mayr M. In aptamers they trust: the caveats of the SOMAscan biomarker discovery platform from SomaLogic. Circulation 2018;138:2482-2485.
- Koschinsky M, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG. Virani SS von Education 4. Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European Atherosclerosis Society consensus statement. Eur Heart 12022:43:3925-3946
- 5. Marston NA, Giugliano RP, Melloni GEM, Park J-G, Morrill V, Blazing MA, Ference B, Stein E, Stroes ES, Braunwald E, Ellinor PT, Lubitz SA, Ruff CT, Sabatine MS. Association of apolipoprotein B-containing lipoproteins and risk of myocardial infarction in individuals with and without atherosclerosis. JAMA Cardiol 2022;7:250.
- 6. Glavinovic T, Thanassoulis G, de Graaf J, Couture P, Hegele RA, Sniderman AD. Physiological bases for the superiority of apolipoprotein B over low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol as a marker of cardiovascular risk. J Am Heart Assoc 2022:11:e025858
- 7. Deng Y-T, You J, He Y, Zhang Y, Li H-Y, Wu X-R, Cheng J-Y, Guo Y, Long Z-W, Chen Y-L, Li Z-Y, Yang L, Zhang Y-R, Chen S-D, Ge Y-J, Huang Y-Y, Shi L-M, Dong Q, Mao Y, Feng J-F, Cheng W, Yu J-T. Atlas of the plasma proteome in health and disease in 53,026 adults. Cell 2025:188:253-271.e7.
- 8. Eldjarn GH, Ferkingstad E, Lund SH, Helgason H, Magnusson O, Gunnarsdottir K, Olafsdottir TA, Halldorsson BV, Olason PI, Zink F, Gudjonsson SA, Sveinbjornsson G, Magnusson MI, Helgason A, Oddsson A, Halldorsson GH, Magnusson MK, Saevarsdottir GS, Eiriksdottir T, Masson G, Stefansson H, Jonsdottir I, Holm H, Rafnar T, Melsted P, Pagnundedottir L, Norddolf CG, Till (Co. Till (C Saemundsdottir J, Norddahl GL, Thorleifsson G, Ulfarsson MO, Gudbjartsson DF, Thorsteinsdottir U, Sulem P, Stefansson K. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 2023;622:348-358.
- Schmidt LE, Speidl WS, Tsimikas S, Mayr M. Reducing reductionism: addressing risk for atherosclerotic cardiovascular disease by apolipoprotein proteomics. *Eur Heart J* 2023;44:
- 2. Scrimiat LE, speidi WS, I simikas S, Mayr M. Reducing reductionism: addressing risk for atheresoretic cardiovascular disease by apolipoprotein proteomics. Eur Heart J 2023;44: 0420–2422.

 10. Clarke R, Von Ende A, Schmidt LE, Yin X, Hill M, Hughes AD, Pechlaner R, Willeit J, Kiechl S, Watkins H, Theofilatos K, Hopewell JC, Mayr M; PROCARDIS Consortium. Apolipoprotein proteomics for residual lipid-related risk in coronary heart disease. Circ Res 2023;132:452–464.

 21. Olioge London Library user on 23. October 2025; 10. Octobe