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Plasma proteomics provides a unique opportunity to enhance disease prediction by capturing protein 
expression patterns linked to diverse pathological processes. Leveraging data from 2,923 proteins 
measured in 53,030 UK Biobank participants, we developed proteomic risk scores for 27 common 
outcomes over 5- and 15-year follow-up periods using two approaches: a linear ElasticNet regression 
model and a deep learning neural network (NN) model. Using Cox regression, we assessed the 
discrimination of proteomic risk scores either in isolation or as incremental improvements over clinical 
risk factors. We also studied the shared and unique protein predictors across conditions. Proteomic risk 
scores demonstrated strong discrimination for most outcomes, with a C-index > 0.80 for 12 diseases. 
NN models outperformed linear models for 11 outcomes, particularly for diseases such as Parkinson’s 
disease (C-index 0.84) and pulmonary embolism (C-index 0.83), where nonlinear relationships 
contributed significantly to prediction. Across all outcomes, the addition of proteomic scores to clinical 
models improved predictive accuracy (ΔC-index 0.03), with the greatest gains observed in 9 diseases 
(ΔC-index > 0.1), including end-stage renal disease, pulmonary embolism, and Parkinson’s disease. 
Analysis of protein contributions revealed shared predictors across multiple diseases, such as growth 
differentiation factor 15 (GDF15), as well as unique predictors like PAEP for endometriosis. While 
NN models may capture complex relationships, linear models provided value through simplicity and 
interpretability. These findings underscore the importance of tailoring predictive approaches to specific 
diseases and demonstrate the pivotal potential of proteomics in advancing risk stratification and early 
detection.

Plasma proteomics, the simultaneous detection and quantification of thousands of plasma proteins, offers a 
unique window into protein expression patterns that may reflect disease pathophysiology1. Although proteins 
are often studied to enhance our understanding of disease biological underpinnings, this information may also 
provide powerful tools for risk stratification purposes. The comprehensive and unbiased nature of the technique 
offers a wealth of information which can be combined into disease specific proteomic risk scores to estimate 
an individual’s risk of developing different conditions. The ease and the relatively low cost of measurement 
constitute further attractive features of proteins as predictive risk factors.

Prediction of future disease has never been more important as globally more people are living with one 
or more conditions, and preventive treatment and screening options are increasing. Identification of high-risk 
individuals is important to guide clinical decisions, healthcare policy and risk communication2. Several proteins 
are already incorporated into disease risk stratification models such as measurements of lipids for Coronary 
Heart Disease (CHD)3,4 prediction or Prostate Specific Antigen (PSA) antigen for prostate cancer screening 
guidance5. More recently, the availability of large-scale proteomic data in large epidemiological studies has 
highlighted the potential of several linear proteomic risk scores to predict common and rare disease outcomes6,7.

Here, we also utilized the available proteomics measurement of 2,923 proteins in 53,030 UK Biobank 
participants to further study different definitions of proteomic risk scores to predict long- and short-term 
incidence of several common diseases. We introduce a novel approach to constructing proteomic risk scores 
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using deep learning neural networks (NN). Unlike traditional regression-based methods, NN can capture 
nonlinear relationships and complex interactions between proteins, offering a more comprehensive and nuanced 
representation of the proteomic landscape. We hypothesised that applied to proteomic data, these models may 
identify subtle proteomic signatures that may otherwise be overlooked by linear methods, potentially improving 
the predictive accuracy of risk scores for chronic diseases. We then compared the predictive value of the NN 
proteomic risk scores to the simpler linear ones as well as to clinical risk predictors and assessed their incremental 
improvement for disease prediction. Finally, we examined which proteins are important for different disease 
outcomes and highlighted proteins which are common or unique predictors of different diseases.

Results
A schematic of the overall study is given in Fig. 1. We derived proteomic risk scores in UK Biobank using a linear 
ElasticNet regression model (linear model) and a non-linear deep learning NN model in the same training and 
test set splits on a per outcome basis to allow for accurate comparison, over two prediction horizons (5 and 15 
years). We compared the predictive accuracy of the two methods of proteomic risk scores and studied their 
incremental performance to a simple clinical model (Methods).

We analysed 53,030 UK Biobank participants (Supplementary Table 1 list the main baseline characteristics of 
the UKB study samples used in this study) and 27 different outcomes with more than 100 incident events based 
on 15-year follow-up (range from 4,070 (CHD) to 119 (schizophrenia); Table 1).

Linear vs. Neural network proteomic risk scores
Proteomic profile derived disease risk scores were generated for 27 outcomes using the proteomics assay of 2,919 
proteins. Linear and NN proteomic risk scores were equivalent (define as their difference in C (ΔC) index < 0.02) 
for only half of examined outcomes (N = 14) (Supplementary Tables 3and Fig. 2A). The NN proteomic risk score 
outperformed the linear score (Fig. 2A) for 11 outcomes with the highest difference seen for multiple sclerosis 
(ΔC index difference = 0.20) for 15 years prediction horizon. Similar results were seen for the 5 years prediction, 
where the overall discrimination of proteomic risk scores for most outcomes was higher (Supplementary Table 
4).

Overall, protein risk scores achieved very good discrimination for most diseases with C index > 0.75 for 19 
outcomes and > 0.80 for 12 outcomes. The highest discriminatory performance for 15 years was seen for end 
stage renal disease (NN proteomic risk score C index = 0.89 for 15 years and 0.98 for 5 years).

Proteomic risk scores and clinical factors over 15 years of follow up
The baseline performance of a clinical model based on standard cardiometabolic risk factors achieved good 
discrimination (C index > 0.70) for 16 different outcomes including non-cardiovascular outcomes such as 
prostate cancer, endometriosis, and lupus erythematosus (Supplementary Table 3, Fig.  2A). However, when 
compared to a model with just age and sex, clinical risk factors had ΔC index > 0.02 for 12 outcomes with the 
largest increases seen for type-2 diabetes (ΔC index = 0.25), schizophrenia (0.20), lupus erythematosus (0.07) 
and depression (0.07).

We then evaluated the discrimination of proteomic risk scores compared to the baseline model of standard 
clinical risk factors (Fig. 2A). Due to the simplicity of the linear proteomic score, we opted for the linear score 
when the performance between the two was equivalent or greater than the NN equivalent (N = 16 outcomes 
with linear scores, N = 11 outcomes with NN scores). The proteomic risk scores performed better than models 
using only the clinical factors (ΔC index difference > 0.02) for 21 out of the 27 examined outcomes (average C 

Fig. 1.  Schematic diagram of the study design.
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index difference 0.03 across all outcomes). Overall, there were 9 outcomes (end stage renal disease, pulmonary 
embolism, COPD, primary pulmonary hypertension, lung and trachea cancer, rheumatoid arthritis, lupus 
erythematosus, motor neuron disease and Parkinson’s disease) which had a combined C index (clinical and 
proteomic risk score) > 0.75 indicating good discrimination and where the addition of the protein risk score 
increased the C index > 0.1 compared to the clinical model indicating incremental value of the proteins in risk 
prediction. Of them, the improvement for Parkinson’s disease, end stage renal disease, lupus erythematosus and 
pulmonary embolism was seen via the NN proteomic risk score.

Proteomic risk score for 5 years vs. 15 years of follow up
Overall, when comparing the performance improvement due to the addition of a protein risk score to a model 
containing only clinical risk factors, the results were similar for the 5-year time horizon, although the proteomic 
risk scores showed higher discrimination than their 15 years equivalent (Fig. 2B). We identified 9 outcomes 
where the addition of a protein risk score to a clinical factor model improved the 5-year prediction by greater 
than 0.1 C-index and an overall C index was greater than 0.75 (asthma, COPD, heart failure, motor neuron 
disease, pulmonary embolism, primary pulmonary hypertension, lung and trachea cancer, and rheumatoid 
arthritis).

Protein contributions to disease risk scores
We investigated the proteins contributing to the linear and NN risk scores. Linear risk scores are much more 
interpretable than the complex non-linear NN models. Therefore, we investigated the proteins contributing to 
the linear risk scores by inspecting the beta coefficients of each ElasticNet regressions for the 20 outcomes which 
improved upon addition of the linear risk score but were not outperformed (ΔC index < 0.05) by the non-linear 
risk score (Supplementary Table 3).

15 years follow-up 5 years follow up

Condition
Prevalent cases
(N)

Cases
(N)

Mean follow-up
time (SD) Cases (N)

Mean
follow-up
time (SD)

Parkinson’s disease 42 430 8.67 (4.25) 102 2.81 (1.37)

Atrial fibrillation 619 3342 9.08 (4.24) 707 2.82 (1.43)

Asthma 2225 2849 7.43 (4.26) 951 2.64 (1.41)

COPD 381 2394 8.48 (4.22) 596 2.80 (1.39)

Dementia 10 1096 10.50 (3.59) 98 3.59 (1.23)

Depression 1034 2662 8.80 (4.05) 554 2.87 (1.45)

Type-2 Diabetes 646 2332 9.06 (4.11) 453 2.78 (1.44)

Endometriosis 298 184 6.28 (4.20) 85 2.57 (1.50)

Primary Malignancy – Pancreatic 4 185 9.68 (4.01) 34 3.35 (1.26)

Heart failure 247 2015 9.55 (4.29) 388 2.76 (1.45)

Motor neuron disease 29 288 7.19 (3.19) 81 3.31 (1.20)

Multiple sclerosis 226 167 7.25 (4.40) 61 2.58 (1.51)

Pulmonary embolism 163 895 9.33 (4.18) 162 2.89 (1.44)

Primary pulmonary hypertension 115 369 5.10 (3.13) 221 3.06 (1.39)

Primary Malignancy - Colorectal and anus 155 776 8.86 (4.38) 184 2.67 (1.40)

Primary Malignancy - Brain, Other CNS and Intracranial 12 125 8.25 (4.06) 36 3.33 (1.28)

Primary Malignancy – Breast 659 1217 8.04 (4.39) 359 2.71 (1.43)

Primary Malignancy - Lung and trachea 32 615 9.16 (4.10) 137 3.35 (1.28)

Primary Malignancy – Prostate 131 1268 9.04 (4.36) 287 2.73 (1.46)

Rheumatoid Arthritis 186 664 9.54 (3.66) 80 3.20 (1.47)

Schizophrenia 99 119 8.38 (4.30) 28 2.54 (1.72)

Lupus erythematosus 
(local and systemic) 267 259 5.84 (3.48) 116 2.68 (1.36)

Psoriasis 474 476 7.89 (4.68) 156 2.38 (1.36)

Primary Malignancy – Gynaecological 126 332 7.98 (4.33) 107 2.88 (1.41)

Coronary heart disease 1296 4070 8.24 (4.39) 1137 2.63 (1.45)

Ischaemic stroke 93 921 9.79 (4.05) 148 2.98 (1.40)

End stage renal disease 39 177 9.39 (4.00) 28 2.88 (1.08)

Table 1.  Summary of the incident disease diagnoses within UK biobank cohort across two different follow 
up periods. Median follow-up time is based on the follow-up time from proteomic plasma measurement 
(baseline) until time to event (first diagnosis, death or censoring date, whichever occurs first). COPD: Chronic 
obstructive pulmonary disease
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Out of the assay of 2,919 proteins included in the generation of every linear risk score, only 474 proteins 
contributed to at least one risk score and 312 of these were unique to a single disease risk score (see 
Supplementary Table 5). Growth differentiate factor 15 (GDF15) was the most frequent contributor to the 
risk scores (12 diseases) (Fig. 3A). The protein with the largest number of inverse relationships were BCAN (8 
diseases). Neurotrophic receptor tyrosine kinase 2 (NTRK2) had the largest contribution to risk scores with a 
total absolute beta of 0.11 across 7 diseases. The number of proteins contributing to each disease risk score varied 
greatly (Fig. 3B, Supplementary Table 6). Type-2 diabetes had the largest number of protein contributions (184 
proteins) whilst three conditions had only one protein generating their risk scores: motor neuron disease (NEFL), 
prostate cancer (KLK3) and endometriosis (PAEP). Three outcomes had only unique proteins: endometriosis 
(1 protein), motor neuron disease (1 protein) and psoriasis (4 proteins). The diseases with the largest ratio 
of unique proteins were ischaemic stroke (14 unique, 2 shared), type-2 diabetes (154 unique, 30 shared) and 
primary pulmonary hypertension (10 unique, 2 shared). There was a large overlap in proteins contributing to 
risk scores for cardiovascular outcomes (Fig. 4).

Fig. 2.  (A) C-index across examined diseases for 15-years follow-up in survival analysis of UK Biobank 
participants. Models with yellow bars in the predictive difference plot indicate outcomes where the linear risk 
score outperforms the neural network risk score. (B) Comparison of the C-index discriminatory performance 
of a survival model containing both clinical risk factors and a protein risk score for 15 years and 5 years of 
follow-up. Both follow-up periods use the same risk scores (linear or neural network) within each disease. 
Models with yellow bars in the predictive difference plot indicate models which use a linear risk score, whilst 
green bars use a neural network risk score (Parkinson’s disease, lupus erythematosus, pulmonary embolism 
and end-stage renal disease).
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Non-linear neural network proteomic risk scores
For the 4 outcomes (Parkinson’s disease, end stage renal disease, pulmonary embolism, lupus erythematosus) 
where the NN risk score outperformed its linear counterpart (ΔC index difference > 0.02) and provided a 
significant improvement over the clinical factors (ΔC index > 0.1) we examined the contribution of proteins 
using SHAP values. Across the four outcomes, a total of 878 proteins had non-zero SHAP values in at least 25% 
of samples and 67 contributed to more than one non-linear NN risk score (see Supplementary Table 7). The 
number of globally important proteins for each disease risk score ranged from 25 proteins (lupus erythematosus) 
to 449 (pulmonary embolism).

Fig. 3.  (A) The number of diseases each protein contributes to and the sum of their absolute beta co-efficient 
across all linear risk scores, restricted to the top 20 proteins. (B) The number of protein’s contributing to each 
of the linear disease risk scores which are either unique to the condition or shared across multiple conditions, 
and the number of proteins with a positive or negative contribution.
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All four diseases had no single predominant protein responsible for the risk score but instead consisted of 
a large set of proteins with similar SHAP values (Fig. 5 and Extended Data Fig. 2). For example, in Parkinson’s 
disease, the top ten proteins had similar overall importance to the generation of the NN risk score based on 
similar total absolute SHAP values (PAEP, NEFL, PAFAH1B3, CHRDL2, GFAP, SFRP4, HPGDS, WNT9A, 
CSDE and IL13RA1); HPGDS and IL13RA1 had an inverse association with disease risk (Fig. 5A). The top 
ten proteins for pulmonary embolism also had similar overall importance to the generation of the NN risk 
score (ENTPD5, TNR, CD200R1, SPINK6, SUSD5, VIT, LYPD3, ISM1, LGALS4, CRTAC1) and four proteins 
(TNR, CD200R1, LYPD3 and CRTAC1) had an inverse association with disease risk (Fig. 5B). Results for lupus 
erythematosus and end stage renal disease are shown in Extended Data Fig. 2.

Discussion
In this study, we demonstrated that plasma proteomics, through the generation of proteomic risk scores, 
offers significant potential not only for understanding disease pathophysiology but also as a powerful tool for 
predicting both short- and long-term risk of various common diseases. Our findings show that state of the art 
deep learning neural network (NN)-based proteomic risk scores often outperform their linear counterparts and 
highlight several diseases where the added value of proteomic data enhances established clinical risk factors, 
achieving high model discrimination (C-index > 0.75). Furthermore, we identified several proteins that are 
consistently included in risk scores across multiple diseases, suggesting their broader relevance in predicting 
multimorbidity but also proteins that are unique to certain diseases. Overall, our results underscore the new 
possibilities of proteomic risk scores for targeted screening and early prevention, particularly for diseases like 
Parkinson’s disease and multiple sclerosis, which lack effective early detection strategies, as well as for predicting 
the risk of multiple conditions simultaneously.

The comparative performance between linear and non-linear NN risk scores across all diseases showed that 
non-linear risk scores generally outperformed linear models in both follow-up periods with marked differences 
for certain diseases such as Parkinson’s disease and motor neuron disease. Unlike linear models, which assume 
direct and additive relationships between proteins and disease risk, NN models can capture complex non-
linear effects within the proteomic data that may otherwise be overlooked while also offering very effective 
regularization to mitigate the risk of overfitting8. This ability likely contributed to improved predictive accuracy. 
Nevertheless, linear risk scores have the advantage of simplicity and interpretability, making them preferable 
when their predictive performance is comparable to that of NN models. Our comprehensive approach examining 
different methodologies for protein risk score development performed better or equally for most of the diseases 
previously examined in the same UK Biobank population6. This emphasises the advantage and robustness of our 
approach as it demonstrates the absence of a universally optimal risk score and the need for a flexible approach 

Fig. 4.  Overlap of the shared proteins contributing to each of the linear risk scores.
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to disease prediction—one that integrates multiple methods to explore the full range of potential solutions and 
tailor the strategy to specific diseases.

NN proteomic scores showed promising predictive ability for Parkinson’s disease, a disease where there 
is unmet clinical need to identify high risk individuals before significant neuronal loss and disabling motor 
and/or cognitive disease. Our proteomic risk score combined with a simple clinical model achieved high 
discrimination (C index = 0.80) to identify high risk of the disease as early as the 15 years prior to the disease 

Fig. 5.  Bee swarm plots for protein SHAP values for Parkinson’s disease (A) and pulmonary embolism (B).
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incidence and was even higher (C index = 0.84) for 5 years follow up confirming similar results from other 
studies using related approaches on proteomics risk scores9. This approach which relies solely on easily accessible 
predictors is particularly advantageous for Parkinson’s disease where risk prediction through invasive lumbar 
puncture or demanding imaging protocols have been alternatively suggested10. The top contributing proteins to 
the model include proteins implicated in related disease pathways and comorbidities such as GFAP (astroglia 
activation), NEFL (neuroaxonal damage), IL13RA1 and CHRDL2 (inflammation), SFRP4 and CHRDL2 (bone 
and joint function) and provide further evidence into the importance of those pathways in identifying high risk 
individuals or prodromal disease stages. Pulmonary embolism is a life-threatening event whose early prediction 
can optimize care by enabling targeted surveillance, timely diagnostic imaging, and preventative interventions11. 
Here, we show that a NN proteomics model achieved high discrimination for pulmonary embolism events in a 
general population over a long 15-year time horizon. Proteins contributing to the risk are involved in processes 
relevant to disease pathogenesis, including coagulation (VIT, SPINK6), endothelial function (ENTPD5, ISM1, 
LYPD3), inflammation (LGALS4), and extracellular matrix remodelling (TNR). Previous efforts in have largely 
focused on risk prediction in individuals with established disease such as venous thromboembolism12. There 
are also several models with simple clinical variables derived from electronic health record data which predict 
risk of future venous thromboembolism which often precedes pulmonary embolism13. Our work highlights 
the potential utility of proteomic risk scores in capturing complex, multidimensional biological signatures 
associated with pulmonary embolism events as well as their potential utility to identify patients at risk of severe 
thrombotic events several years before disease onset and guide prophylactic treatment or help avoid medication 
which might increase the risk of pulmonary embolism14,15.

Pulmonary embolism is a life-threatening event whose early prediction can optimize care by enabling targeted 
surveillance, timely diagnostic imaging, and preventative interventions11. Here, we show that a NN proteomics 
model achieved high discrimination for pulmonary embolism events in a general population over a long 15-
year time horizon. Proteins contributing to the risk are involved in processes relevant to disease pathogenesis, 
including coagulation (VIT, SPINK6), endothelial function (ENTPD5, ISM1, LYPD3), inflammation (LGALS4), 
and extracellular matrix remodelling (TNR). Previous efforts in have largely focused on risk prediction 
in individuals with established disease such as venous thromboembolism12. There are also several models 
with simple clinical variables derived from electronic health record data which predict risk of future venous 
thromboembolism which often precedes pulmonary embolism13. Our work highlights the potential utility of 
proteomic risk scores in capturing complex, multidimensional biological signatures associated with pulmonary 
embolism events as well as their potential utility to identify patients at risk of severe thrombotic events several 
years before disease onset and guide prophylactic treatment or help avoid medication which might increase the 
risk of pulmonary embolism14,15.

Through this systematic analysis, we demonstrate the potential to identify core sets of proteins that could 
significantly improve the prediction of multiple diseases. Importantly, we show that the optimal method for 
selecting these proteins—whether linear models or neural networks—varies depending on the specific disease 
and its unique prediction requirements. Beyond the examples of Parkinson’s disease and pulmonary embolism 
discussed earlier, our findings underscore the broader promise of proteomic risk scores in predicting several 
other common outcomes. However, we present this as a proof-of-concept study. A comprehensive evaluation 
of prediction algorithms for each selected outcome would require focused efforts, including model calibration, 
detailed assessment of existing or newly developed models for each disease, and decision analyses tailored to 
different treatment or screening thresholds2. Such work extends beyond the scope of this study and should be 
customized to address the specific needs of individual outcomes.

The examination of shared and unique proteins across a range of diseases provides valuable insights into the 
overlapping and distinct risk factors among various conditions. Consistent with prior findings, we identified 
several proteins that act as shared predictors across multiple diseases. These shared proteins likely represent 
systemic pathways central to the development of multimorbidity, including processes such as aging, stress 
response, and inflammation. For instance, BCAN (brevican) was inversely associated with the risk of several 
conditions. As a key extracellular matrix protein in the central nervous system16BCAN may also indicate 
systemic effects or reflect resilience to a broad spectrum of pathological processes. At the same time, we identified 
numerous unique predictors that may be specific to particular outcomes or offer limited additional value to 
already selected markers. While these models hold promise for improving prediction accuracy, it is important to 
note that their use is not intended to draw causal inferences.

Several limitations should be acknowledged. Disease misclassification may have occurred, as we relied solely 
on hospital episode statistics and did not have access to other sources such as cancer registry data, potentially 
leading to incomplete case identification. Additionally, our definition of prevalent cases was based solely on 
retrospective electronic health records, without incorporating self-reported diagnoses, which may have 
resulted in the omission of a small number of additional prevalent cases. The 5 years follow up analyses has 
substantially smaller number of incident events compared to the 15 years analyses, which limits the statistical 
power of models investigating this time horizon and may cause unreliable estimates. Other limitations of our 
work include the need for validation of the models in independent external populations, the limitation of our 
analyses on outcomes that have sufficient sample size within the UK biobank sub cohort, the restriction to the 
proteins measured in the OLINK panel used in UK biobank and the lack of generalisation of our findings to 
other ethnically diverse populations. Finally, while we employed NN models, their inherently complex nature 
limits interpretability, as we cannot precisely determine the nonlinear effects and interactions within the models.

In conclusion, proteomics risk scores, either linear or NN models, demonstrated strong discriminatory 
ability for a variety of other outcomes over both short- and long-term follow-up periods. These outcomes 
span diseases for which established prediction models already exist such as CHD, as well as conditions that 
currently lack robust predictive tools. For diseases with existing models, proteomics-based approaches provide 
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an opportunity to enhance accuracy by incorporating easily measured predictors not captured by traditional 
clinical factors. For diseases without current models, these scores offer a promising avenue for early detection 
and risk stratification. Overall, proteomic scores show potential in bridging gaps in predictive healthcare, 
fostering targeted interventions, and supporting precision medicine initiatives aimed at improving outcomes 
across a wide spectrum of diseases.

Methods
Study overview
We used data from UK Biobank (UKB), a general population cohort study, which enrolled 502,536 volunteers 
aged 40 to 69 years from 2006 to 2010 in 22 recruitment centres across the United Kingdom. Proteomic 
profiling of blood plasma samples collected at participant recruitment was conducted on a randomised subset 
of individuals using the Olink platform (N = 53,030) in stored serum samples as previously described17. For 
all participants, retrospective and prospective linkage to electronic health data was available, including on-
going primary (readcode) data, hospital episode statistics data on hospital admissions, and Office for National 
Statistics cause of death data. We selected outcomes with more than 100 number of incident cases based on 15-
year follow-up which could be captured through electronic health record focusing on common chronic diseases 
including cardiometabolic, respiratory, mental health and neurological outcomes as well as common cancers. 
Overall, 27 different outcomes were examined and were classified by the CALIBER code list18patients with 
prevalent disease were excluded for each endpoint (Supplementary Tables 9& Supplementary Table 10). Disease 
cases were identified using readcode and ICD-10 codes within the June 2023 release of participant linked general 
practitioner records, hospital episode statistics and death records. The study population was restricted to UKB 
individuals with proteomic data and divided into a training and test set on a per outcome basis (see statistical 
analysis section for details). In these sets, we examined the predictive performance of proteomic risk scores, of 
a basic clinical risk score and their combination. The clinical risk score included cardiovascular predictors used 
in the pooled cohort’s equation from the American Heart Association19 as well as ethnicity and education which 
are associated with a vast number of outcomes. The test set samples were used for model evaluation in survival 
analysis models. The performance contribution of a linear and a more complex non-linear NN proteomic risk 
score were compared and the important proteins for each risk score were identified.

Townsend deprivation index was available for all participants corresponding to the census output area in 
which their residential postcode is located. Total serum cholesterol, HDL cholesterol and HbA1c levels were 
obtained from enzymatic assays (Backman Coulter AU5800). We calculated mean systolic blood pressure 
from two measurements taken seated after two minutes rest using an appropriate cuff and an Omron HEM-
7015IT digital BP monitor or manual reading. To define treated hypertension, we used information from self-
administrated questionnaire on blood pressure lowering medication.

Statistical analysis
Proteomic risk score calculation
We excluded individuals with > 25% missing values across all proteins (N = 8,499) and excluded proteins 
with > 25% missing values across all remaining samples (N = 4). All remaining missing values were imputed 
using K-Nearest Neighbours. Two different approaches to calculate a univariate proteomic risk scores for each 
outcome based on 2,919 measured proteins were used, a linear ElasticNet regression model (linear model) and 
a non-linear NN model, separately for each outcome using all cases within a 15-year follow period. For each 
outcome, an outcome specific control set was created using all UK BioBank individuals that did not have an 
incident or prevalent diagnosis of the outcome examined within 15-years follow-up. To allow for unbiased 
estimation of model performance, a held-out test set was created for each endpoint and kept identical for the 
linear and neural network risk models. Random stratified sampling of the incidence cases separately for each 
outcome was applied to ensure an equal split of case/controls in the training and test sets with an 80/20 split 
ratio (see Table 1 for sample sizes corresponding to each outcome). Hyperparameter tuning was performed for 
each model using the training set with fivefold cross-validation and all data was standardised using estimates 
collected from the training set within each fold. Final models were trained using the entire training set with 
optimal hyperparameters and evaluated using the test set (see Supplementary Tables 2 & Supplementary Table 
8 for full hyperparameters details).

Linear risk scores were generated using ElasticNet regression models with standardised protein levels as 
exposure and each disease as outcome. Model performance was evaluated primarily using area under the 
receiver operating curve (AUROC), in combination with mean squared error and area under the precision recall 
curve (AUPRC) which were checked for consistency. NN risk scores were generated using a feed-forward neural 
network with the same exposures and outcomes. To improve the classification performance, the NN was pre-
trained using unsupervised contrastive learning followed by supervised fine-tuning. The contrastive learning 
was performed using a self-supervised contrastive learning using random feature corruption (SCARF)20which 
applies random feature corruption to generate augmented views of the input data, helping the model learn 
representations that are robust to noise and distortions. By doing so, the model becomes better at distinguishing 
between positive pairs—corrupted and original versions of the same instance—and negative pairs from 
different instances, leading to more discriminative features. Self-distillation was performed by initially training 
a teacher model using the contrastive learning pre-trained model attached to a disease classification head. We 
subsequently trained a student model with the same model architecture using the teacher to provide soft labels 
for self-distillation21. To address the large class imbalance issue with deep learning models, we explored the 
application of Synthetic Minority Oversampling Technique (SMOTE)22under sampling of the majority (control) 
class and class-weighted loss to the training set during the hyperparameter tuning stage for each outcome. Model 
performance was evaluated primarily using AUROC, in addition to checking for consistency using Brier loss 
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for the positive class and AUPRC. When the addition to a basic clinical risk score of the non-linear risk score 
compared to the linear risk score provided greater than a 0.05 C-Index improvement in the 15 years follow up 
model, we calculated the protein contribution to the non-linear risk score using Shapley additive explanation 
(SHAP) values23. SHAP values provide individual level protein importance to risk score generation which allows 
for the identification of important proteins for subpopulations. However, we are interested in the proteins 
important for the majority of the population. To identify the globally important proteins, we filtered out the 
proteins with non-zero SHAP values in less than 25% of the samples for each outcome.

Survival analysis was conducted using Cox ElasticNet models for each outcome utilising the same outcome 
specific training and held-out test set splits as the risk score generation pipeline. Our primary analysis used a 
prediction horizon of 15 years of follow up (maximum follow up time in UKB). We also performed secondary 
analysis with 5 years of follow up to examine the value of the proteomic scores in short term diagnoses of 
common chronic diseases. Participant follow-up started at the date of their blood sample plasma collection, 
equivalent to their first visit to a UKB recruitment centre. Time-to-event was set at whichever occurred first; 
the first instance of disease diagnosis, death of the participant or censoring date (June 2023). For each disease 
outcome, participants with the first instance of disease diagnosis before the collection of their blood plasma 
sample were excluded. For type-2 diabetes, we additionally excluded individuals with HbA1c > 6.5% at baseline. 
Three models were explored per outcome: a model with only clinical factors (age, sex, ethnicity, deprivation 
index, systolic blood pressure, blood pressure medication usage, HDL cholesterol, total cholesterol and HbA1c), 
a model with clinical factors plus the univariate linear proteomic risk score for each outcome and a model 
with clinical factors plus the univariate non-linear proteomic risk score for each outcome. To ensure unbiased 
estimation of model performance, model discrimination was evaluated using Uno’s C-index24 on the held-out 
test set. We defined the linear and NN proteomic risk scores as equivalent if the C-index between the two models 
was smaller than 0.02 (ΔC index < 0.02).

Software
All analysis was performed using Python v3.7.9. Data processing, cross-validation and ElasticNet regressions 
were performed using the sci-kit learn package25. Neural network models were created using the pytorch 
package26. Survival analysis and evaluation were performed using the sksurv package27.

Data availability
All proteomic, covariate and disease outcome data used in this study are available from UKB to bona fide re-
searchers upon successful application (https://www.ukbiobank.ac.uk).
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