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A genetic map of human metabolism across 
the allele frequency spectrum
 

Martijn Zoodsma    1,2, Carl Beuchel    1,2, Summaira Yasmeen    1, 
Leonhard Kohleick    1, Aakash Nepal1, Mine Koprulu    3, Florian Kronenberg    4, 
Manuel Mayr    5, Alice Williamson    1,3,6, Maik Pietzner    1,2,3,7   & 
Claudia Langenberg    1,2,3,7 

Genetic studies of human metabolism have been limited in scale and allelic 
breadth. Here we provide a data-driven map of the genetic regulation of 
circulating small molecules and lipoprotein characteristics (249 traits) 
measured using proton nuclear magnetic resonance spectroscopy across 
the allele frequency spectrum in ~450,000 individuals. Trans-ancestral 
meta-analyses identify 29,824 locus–metabolite associations mapping to 
753 regions with effects largely consistent between men and women and 
large ancestral groups represented in UK Biobank. We observe and classify 
extreme genetic pleiotropy, identify regulators of lipid metabolism, and 
assign effector genes at >100 loci through rare-to-common allelic series. We 
propose roles for genes less established in metabolic control (for example, 
SIDT2), genes characterized by phenotypic heterogeneity (for example, 
APOA1) and genes with specific disease relevance (for example, VEGFA). 
Our study demonstrates the value of broad, large-scale metabolomic 
phenotyping to identify and characterize regulators of human metabolism.

Our understanding of human metabolism is mostly based on dedicated 
hypothesis testing in experimental settings, informed by model organ-
isms or observations in patients with rare diseases. Only recently has 
high-throughput profiling of small molecules in large-scale studies 
enabled systematic testing of genetic variation across the genome and 
provided an agnostic approach for discovering genes that encode key 
metabolic regulators1–11. These efforts have provided important new 
insights into how genetic variation shapes human chemical and meta-
bolic individuality1 and have corroborated a large body of biochemical 
knowledge1,2,10,12.

The importance of such genome–metabolome-wide associa-
tion studies (mGWAS) extends beyond the mapping of biochemical 
pathways, sometimes demonstrating almost immediate clinical value. 
They provided examples of how readily available supplementation 
strategies may prevent disease or delay onset in high-risk individuals, 

such as serine for macular telangiectasia type 2, a rare eye disorder2. 
They further identified unknown variants that affect the absorption, 
distribution, metabolism and excretion of exogenous compounds, 
most importantly drugs1,13, thereby providing pathways to mitigate 
adverse drug effects. However, there are several challenges that cur-
rently limit the potential of mGWAS analyses, particularly for causal 
inference. These include (1) the still rather small number of, at most, a 
dozen genetic variants linked to single molecules, (2) the inability to 
distinguish whether pleiotropic variants act on different molecules 
or pathways independently (horizontal pleiotropy), or whether they 
serve as ‘root causes’ of successive downstream changes (vertical 
pleiotropy), (3) the difficulty in distinguishing between locus-specific 
and metabolite abundance effects when colocalization at disease-risk 
loci is observed1 and (4) the challenge of confidently assigning effector 
genes at newly identified loci.
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Sex-differential effects at loci encoding metabolic genes
While we observed highly correlated effect sizes across female and 
male participants (median r = 0.98, range 0.90–0.99), we also identified 
360 putative sex-differential loci for 239 NMR measures, represent-
ing 1,800 heterogenous associations in sex-stratified meta-analyses 
(heterogeneity P value <5 × 10−8), most of which (65.3%; n = 1,175 loci) 
could not be explained by confounding factors (Supplementary 
Note, Supplementary Fig. 2 and Supplementary Table 4). Putative 
sex-differential loci were generally directionally concordant between 
the sexes (Fig. 2a), in line with previous proteomics analyses and sug-
gesting that significant sex interactions do not reflect sex-discordant 
effects15.

Refinement of regional associations through multi-ancestry 
fine-mapping
We next used a two-stage strategy to refine regional associations 
to a smaller number of candidate causal variants. We first identi-
fied 3,007 statistically independent metabolite quantitative trait 
loci (mQTLs) associated with one or more NMR measure, repre-
senting a total of 43,322 credible set–NMR measurement pairs 
(Supplementary Table 5). Lead fine-mapped mQTLs per NMR trait 
explained on average 6.9% (range 0.57–13.42%) of variance in plasma 
metabolite concentrations (Extended Data Fig. 4). Second, we lever-
aged the different linkage disequilibrium (LD) structure in British 
African and British Central/South Asian individuals to further refine 
3,386 credible sets that contained >1 variant and with suggestive 
evidence in either ancestry, leading to an increase in the number of 
credible sets with high-confidence variants and decrease in mean 
credible set size from 9 to 4 variants (Supplementary Note and 
Supplementary Fig. 3). Trans-ancestral fine-mapping improved reso-
lution in loci that did not resolve in individuals of European ances-
try alone, but we note that the overall improvement was marginal. 
Instead of refining already tight credible sets, future studies should 
therefore focus on scaling discovery in non-European ancestries to 
identify unknown causal variants.

Biological reclassification of established ‘lipid’ loci
To assess the value of metabogenomic studies of 1H NMR- 
spectrometry-based lipoprotein profiling over standard clinical mark-
ers, we classified NMR metabolome association profiles for 1,657 
genetic variants reported for commonly measured clinical markers 
(LDL cholesterol, HDL cholesterol, total cholesterol and triglycerides) 
obtained in 1.6 million people16. Around 25% of associated variants 
had the corresponding NMR measure among the top 10% of the most 
strongly associated NMR measures, with 22.5% of genetic variants 
showing significantly stronger association with refined lipoprotein 
measures compared with their matching measure on the NMR platform, 
an observation most pronounced for non-HDL and LDL cholesterol 
concentrations (Fig. 2b). Relevant loci for lipoprotein metabolism 
can thus be discovered using readily available clinical measurements; 
however, refined lipoprotein profiles are necessary for better under-
standing the relevant biological pathways, including any inference 
about druggability or use for genetic causal inference methods. One 
such example was the PNPLA3 locus (tagged by rs3747207, associ-
ated with LDL cholesterol by the Global Lipids Genetics Consortium; 
β = −0.014, P = 2.3 × 10−21), where we observed no association with LDL 
cholesterol (β = −0.001, P = 0.49) but with LDL particle size (β = 0.045, 
P = 1.04 × 10−73), and multiple characteristics of extra-large VLDL 
particles (Extended Data Fig. 5). The intronic rs3747207 variant is in 
strong LD (r2 = 0.98) with the well-known missense variant rs738409 
(p.Ile148Met) that has been demonstrated to confer hepatic lipid 
accumulation by altering ubiquitination of patatin-like phospholipase 
domain-containing protein 3 (PNPLA3)17. Our results provide human 
genetic support for a recently proposed role of PNPLA3 in the secretion 
of large VLDL particles18.

Here, we integrated rare (based on whole exome sequencing) and 
common genetic variation with measures of 249 metabolic pheno-
types, including small molecules and detailed lipoprotein character-
istics, among >450,000 UK Biobank (UKB) participants representing 
three distinct ancestries. We demonstrate largely consistent genetic 
regulation across ancestries and sexes for almost 30,000 locus–
metabolite associations and systematically categorize abundant 
genetic pleiotropy. By integrating machine-learning-derived effector 
gene assignments with rare exonic variation, we identify previously 
unknown regulators of metabolism and observe heterogeneity in 
association profiles for variants mapping to the same gene. Finally, 
we demonstrate how systematic integration of statistical colocaliza-
tion and Mendelian randomization can identify pathways with the 
potential to mitigate cardiovascular disease (CVD) risk beyond current 
approaches focused primarily on lowering low-density lipoprotein 
(LDL) cholesterol.

Results
We integrated genome-wide association studies (GWAS; 
population-specific minor allele frequency (MAF) ≥0.5%) with rare 
exome-wide association studies (ExWAS; MAF ≤0.05%) on plasma 
concentrations of 249 metabolite phenotypes, quantified using 1H 
nuclear magnetic resonance (NMR) spectroscopy. We included up 
to 450,000 UKB participants across three major ancestries (British 
White European, EUR (n = 434,646); British African, BA (n = 6,573); 
British Central/South Asian, BSA (n = 8,796)) (Extended Data Fig. 1). 
The NMR measures comprised 14 lipoprotein subclasses and associ-
ated characteristics (that is, extra-large very-low-density lipoprotein 
(VLDL) to small high-density lipoprotein (HDL) particles), along with 
small molecules such as amino acids and ketone bodies quantified in 
molar concentration units (Supplementary Table 1).

Common genetic variation underlying circulating metabolites
We identified 29,824 regional sentinel–NMR measure associations 
in trans-ancestral meta-analyses, representing 753 nonoverlapping 
genomic regions (Fig. 1a and Supplementary Table 2). Nearly half of 
these regions (n = 359, 47%) associated with more than ten NMR meas-
ures, demonstrating considerable pleiotropy. Characteristics of large 
HDL particles, such as particle size and lipid composition, were asso-
ciated with the largest number of regions (median 166, interquartile 
range 126–195), compared with all NMR measures (median 105, inter-
quartile range 68–142), findings that considerably extended previous 
work3 and replicated parallel efforts using UKB9 (Extended Data Fig. 2). 
Genes with well-characterized roles in human metabolism were signifi-
cantly enriched across different significance bins (adjusted P values 
<4.24 × 10−9; Supplementary Fig. 1), suggesting that ever-larger studies 
of omnigenic traits, such as metabolites, still yield biological plausible 
findings.

We observed significant evidence of heterogeneity (P < 1 × 10−4) 
across ancestries for very few loci (n = 342; 1.14%), and ancestral-wise 
comparison of effect estimates demonstrated largely con-
cordant effect estimates (Fig. 1c,d, Extended Data Fig. 3 and 
Supplementary Table 3). All sentinels seen in individuals of British 
African and British Central/South Asian ancestry were replicated 
in individuals of European ancestry, except for one locus that was 
specific to British Africans. The previously reported14 missense vari-
ant rs3211938 within CD36, which is common among individuals of 
African ancestry (MAFBA = 0.12) but absent among individuals of Euro-
pean ancestry (MAFEUR = 0.0), was significantly associated (P values 
<1.49 × 10−10) with lower plasma concentrations of omega 3 fatty acids 
and 15 other NMR measures, including lipoprotein particle charac-
teristics. This is in line with the role of CD36 encoding for a fatty acid 
translocase, facilitating the recognition and uptake of long-chain fatty 
acids. We note that the sample sizes in the smaller ancestral groups 
did not permit comprehensive replication.
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Machine-learning-guided effector gene assignment
We successfully assigned effector genes for almost three-quarters of 
European ancestry fine-mapped mQTLs (73.6%; n = 2,213) with at least 
moderate confidence (candidate gene score ≥1.5, range 0–3), including 
about 28.2% with high-confidence assignments (score ≥2; n = 848), by 
training a machine learning model that integrates functional genomic 
resources with pathway information inspired by the ProGeM frame-
work19 (Supplementary Table 6). For example, we prioritized the fatty 
acid elongase gene ELOVL6 for 16 different VLDL/HDL characteristics 

(tagged by rs3813829). The gene product, ELOVL fatty acid elongase 6,  
catalyzes the rate-limiting step in long-chain fatty acid elongation, 
which are subsequently incorporated into lipoprotein particles. We also 
prioritized genes with upstream roles in metabolism, including a locus 
on 17q25.3 where we prioritized cytohesin-1 (CYTH1) as the putative 
effector gene for 5 independent genetic variants linked to 11 distinct 
NMR measures mostly comprising characteristics of VLDL particles. 
CYTH1, previously associated with type 2 diabetes20, promotes activa-
tion of ADP-ribosylation factors (ARF)1, ARF5 and ARF6, regulators of 
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Fig. 1 | Common genetic regulation of circulating metabolites. a, A top-down 
Manhattan plot showing trans-ancestral sentinel variants for 249 metabolic 
phenotypes at a metabolome-adjusted genome-wide significance threshold of 
P < 2.0 × 10−10. Each row represents an NMR measure, colored for biochemical 
class. Chromosomal positions are shown on the x axis. P values are raw −
log10(P value) from a two-sided Z test across effect estimates derived within 
three ancestral groups. b, Weighted average allele frequency compared with 

estimated effect size for trans-ancestral sentinel variants. Points are colored for 
biochemical classification. c, A comparison of effect sizes between British White 
European samples (x axis) and British African samples (y axis). We considered 
variants that were significant in either population. d, Similar to c but comparing 
British Central/South Asian samples. Dots are colored according to their absolute 
Z score in British White European samples.
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lipid vesicle transport, membrane lipid composition and modification21, 
demonstrating a relevant but indirect link to lipoprotein metabolism.

We observed considerable overlap of machine-learning-guided 
effector gene predictions (top three genes) with those reported 
based on manually curated biological plausibility (191 out of 283 
loci)3 or based on colocalization with protein quantitative trait loci 
(pQTLs) that have not been used to train the algorithm22 (81 out of 143; 
Supplementary Table 6). While missing overlap indicates room for 
improvement, 24 high-confidence assignments strongly disagreed 
with either external source (gene score > 2 but no match among pQTLs 
prioritized or manually curated ones). For example, we prioritized PEPD 
(score 2.42) as opposed to CEBPA3 for rs62102718. PEPD encodes pepti-
dase D, which has been shown to promote adipose tissue fibrosis in 
mouse knock-out models promoting insulin resistance23. Insulin resist-
ance, in turn, provides a very plausible explanation for the pleiotropic 
effect of the variant on diverse lipoprotein characteristics (n = 31).

Tissue distribution of effector genes
Assigned effector genes were significantly enriched in different tis-
sues, reflecting known and lesser-established organ contributions 
(Extended Data Fig. 6a and Supplementary Table 7). Genes character-
istic of the liver, adipose tissue, adrenal gland and female breast tissue 
(probably reflecting its high adipose tissue content) were significantly 
enriched among effector gene sets across the metabolic measures 
captured by NMR. This included significant enrichment of all amino 
acids in liver tissue (for example, phenylalanine: odds ratio (OR) 14.8, 
P < 1.3 × 10−8, histidine: OR 7.9, P < 2.9 × 10−11) but also for skeletal muscle 
in alanine metabolism (OR 3.82; P < 7.9 × 10−9). Similar enrichments 
were observed when using the closest gene instead of our annotated 
effector genes for mQTLs (Extended Data Fig. 6b).

Metabolic versus systemic pleiotropy
Pleiotropy is widespread but poorly understood. We developed a frame-
work to characterize four different modes of metabolic pleiotropy 
(Fig. 3a–d, Extended Data Fig. 7, Supplementary Table 6 and Methods). 
About half of the pleiotropic mQTLs (n = 880; ≥2 NMR measures) showed 
evidence for two different modes of vertical pleiotropy. First, within 
confined pathways (n = 218; ‘pathway pleiotropy’; Fig. 3a) or, second, as 
a function of the correlation with the ‘lead’ NMR measure (n = 662; ‘pro-
portional pleiotropy’; Fig. 3b). A prototypical example for proportional 
pleiotropy was an mQTL tagged by rs624698 for which we prioritized 
ANGPTL3 as the likely effector gene (Fig. 3b). Angiopoietin-like 3, encoded 
by ANGPTL3, inhibits lipoprotein lipase activity but also endothelial 
lipase, resulting in increased triglycerides, HDL cholesterol and 

phospholipid concentrations, consistent with HDL-particle character-
istics being the most strongly associated NMR measure (P < 1.0 × 10−546). 
Other associations reflected downstream effects on lipoprotein metabo-
lism rather than acting on independent pathways (Fig. 3b), considerably 
expanding previous genetic observations24.

The remaining half of pleiotropic mQTLs showed evidence for 
two modes of horizontal pleiotropy: those with evidence for ‘dispro-
portional pleiotropy’ (n = 68) and a larger group with evidence for 
‘nonspecific pleiotropy’ (n = 720). For example, a small deletion on 
chromosome 1 (chr1:92982441:CA>C) was associated with a highly cor-
related cluster of NMR measures, including characteristics of interme-
diate density lipoprotein (IDL), LDL and VLDL particles (Fig. 3c), but for 
which we detected no correlation of association strengths according 
to the lead NMR measure, the concentration of esterified cholesterol 
in medium-sized VLDL particles (P < 6.8 × 10−14). We prioritized EVI5 as 
the most likely effector gene, supported by previous studies on rare 
functional variants25. The gene product of EVI5, ecotropic viral integra-
tion site 5, has no apparent link to (lipoprotein) metabolism, in line with 
most of the gene assignments for mQTLs with a similar nonspecific 
pleiotropy pattern. An example of nonspecific pleiotropy was the APOB 
missense variant rs676210 (p.Pro2739Leu) associated with 126 NMR 
measures across the entire lipoprotein density range, but also creati-
nine and glycoprotein acetyl concentrations (Fig. 3d). The differential 
effects of the same genetic variation on distinct lipoprotein subgroups 
aligns with changes in lipid profiles seen with mipomersen, an antisense 
oligonucleotide against APOB, that demonstrated reductions in LDL 
cholesterol but also subsequent increases in the triglyceride content 
of VLDL particles as hepatic adaption occurs26.

Modes of molecular pleiotropy only partially translated into phe-
notypic pleiotropy (Fig. 3e,f). We observed a twofold enrichment of 
‘proportional pleiotropic’ (OR 2.11; P < 2.0 × 10−14) and to a lesser extent 
an enrichment of ‘nonspecific pleiotropic’ (OR 1.52; P < 1.1 × 10−5) variants 
among variants reported in the GWAS Catalog for ≥5 nonmetabolomic 
trait categories (Methods). By contrast, the set of pleiotropic GWAS 
Catalog variants was significantly depleted for ‘specific’ mQTLs (OR 0.42; 
P < 1.6 × 10−21). Systemic mechanisms explaining effects of ‘proportional’ 
and ‘nonspecific’ pleiotropic mQTLs were further indicated by a more 
than 20-fold significant enrichment of associated trait categories such 
as ‘metabolic disease’, ‘fatty liver disease’ and ‘arterial disorders’ (Fig. 3g).

Convergence of common and rare genetic variation shaping 
metabolism
We next sought to understand convergence of rare and common genetic 
findings to systematically identify allelic series that increase confidence 
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in causal gene assignment. We identified rare variation (MAF ≤0.05%) 
in 209 genes to be significantly (P < 1.1 × 10−8) linked to one or more of 
249 NMR measures combining ultrarare gene burden analysis (3,709 
significant associations; Supplementary Table 8) and rare exonic vari-
ant analysis (4,131 significant associations; Supplementary Table 9). 

Effect sizes were significantly larger compared with more frequent 
variant effects (Fig. 4a). For example, participants carrying rare pre-
dicted loss-of-function (LoF) variants in SLC13A5 had more than 1.4 s.d. 
units higher plasma citrate concentrations per copy of the possibly 
damaging allele (β = 1.41; P < 2.6 × 10−20).
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Fig. 3 | Modes of pleiotropy. a–d, Representative scatterplots opposing the 
squared trait correlation of the lead NMR measure for the listed variant against 
the absolute Z score from linear regression models for all associated NMR 
measures. The colors indicate different modes of pleiotropy and correspond to 
the legend in e. For each plot, a linear regression fit (lines) with 95% confidence 
interval (bands) is given. Scatterplots in a–d represent examples of mQTLs 
classified as pathway pleiotropy (a), proportional pleiotropy (b), disproportional 
pleiotropy (c) and nonspecific pleiotropy (d). e, The number of associated NMR 
measures for each of 3,007 mQTL groups opposed to associations reported in 

the GWAS Catalog after pruning the GWAS Catalog for metabolic phenotypes 
(Methods). Coloring is according to modes of pleiotropy. f, A scatterplot 
opposing the number of associated NMR measures (x axis) of each mQTL group 
with the number of reported EFO parent categories in the GWAS Catalog. g, ORs 
(rectangle) and 95% confidence intervals (CIs; lines) from logistic regression 
models testing whether EFO categories (x axis) are more frequently reported for 
pleiotropic mQTL groups compared with specific ones. Darker colors indicated 
estimates passing corrected statistical significance. n = 3,007 mQTL groups have 
been used for enrichment testing.
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We also observed considerable pleiotropy, including 47 genes 
associated with 20 or more NMR measures. Many of these genes 
encode for well-known enzymes and transportes, with nearly 
half (n = 23/51 genes) being involved in (peripheral) cholesterol 
metabolism (Extended Data Fig. 8). Some rare pleiotropic variants 
with large effect sizes (MAF <0.02% and β > 0.6 s.d. units) pointed 
toward less-established regulators of metabolism, including 
SIDT2 (chr11:117186662:C>T, n = 124 associated NMR traits), JAK2 
(chr9:5073770:G>T (p.Val617Phe), n = 73 associated NMR traits) or 
CEP164 (chr11:117356670:C>G, n = 49 associated NMR traits). Experi-
mental work already suggested a role for the gene product of SIDT2 
(SID1 transmembrane family member 2) in hepatic lipid metabolism 
and apolipoprotein A1 (ApoA1) secretion, the main protein component 
of HDL particles, which constituted the majority of associated NMR 
measures27,28 (Fig. 4b). Variation in JAK2 predisposes to somatic muta-
tions inducing hematopoiesis of indeterminate potential (CHIP)29, but 
other studies linked the gene product Janus kinase 2 ( JAK2) to metabo-
lism in liver30, adipocytes31 or macrophages32. The strong inverse asso-
ciation with parameters of HDL particles thereby best aligned with a 
role of JAK2 in promoting the interaction with ATP-binding cassette 
transporter A1 (ABCA1) and subsequent HDL-mediated lipid removal 
from cells, including atherogenic macrophages32. These findings con-
siderably expanded an earlier hypothesis that attributed effects of 
the same JAK2 variant on LDL cholesterol primarily to myeloid cells 
in a mouse model33. This hypothesis only partially aligns with—and 
in some respects contrasts—our human genetic findings across the 
lipoprotein-density gradient.

We observed strong overlap between gene burden and common 
variant findings, with 85.4% of rare variant (n = 3,528) and 75.5% of gene 
burden (n = 2,802) associations being <100 kb away from the nearest 
statistically independent lead credible set variant (Fig. 4c). By con-
trast, most common variant findings (92.3%) were not within 500 kb of 
matching rare variant/burden evidence. Notably, 12.1% of gene burden 
results were more than 1 Mb away from the next common credible set 
variant for the respective NMR measure, aligning with recent observa-
tions that both approaches prioritize partly different genes34.

At 116 genes (55.5%), rare variant and/or burden evidence over-
lapped with effector gene predictions for close by common cred-
ible set variants (≤200 kb) for one or more associated NMR measure 
(Fig. 4d), providing independent support for allelic series (Fig. 4d and 
Supplementary Table 10). For example, we identified an allelic series 
composed of seven rare LoF, one gain-of-function and four common var-
iants for serum citrate levels at SLC13A5 encoding a sodium-dependent 
citrate co-transporter. Another allelic series at ANKH comprised four 
common variants (rs185448606, MAF 1.3%; rs17250977, MAF 4.0%; 
rs826351, MAF 44.3%; rs2921604, MAF 45.9%) and a rare missense 
variant chr5:14745916:T>C (MAF 0.0069%) being also associated with 
lower serum concentrations of citrate (β = −2.18 s.d. units, P < 5.2 × 10−11) 
(Fig. 4d). ANKH encodes a multipass transporter, recently shown to 
transport citrate35, with an important role in bone health35.

Phenotypic heterogeneity within allelic series
We observed evidence that genetic variants within 17 genes associated 
with >10 NMR measures had differential metabolic consequences 
within an allelic series (Supplementary Table 10). The most outstand-
ing example included seven variants (five rare; two common) and 
a cumulative burden of rare predicted LoF variants at APOA1. They 
distinctively associated with one or more of 87 NMR measures, most 
strongly with diverse characteristics of HDL particles of which the 
gene product, Apolipoprotein A1 (ApoA1), is the major component 
(Fig. 4e,f). This included four rare missense variants (MAF ≤0.03%) 
encoded in exon 4 that partly differentially associated with the num-
ber, size and cholesterol content of HDL particles (Fig. 4e), only one of 
which (p.Leu158Pro) primarily associated with serum ApoA1 concen-
trations and HDL particle number, mimicking the cumulative burden 
of high-confidence predicted LoF variants in APOA1 and suggesting a 
potentially dysfunctional protein that lacks interaction with lecithin 
cholesterol acyl transferase to facilitate cholesterol uptake36. By con-
trast, p.Lys131del and p.Arg201Ser seemed to rather predispose to a 
shift in cholesterol content from large towards small HDL particles, a 
pattern opposed by p.Asp113Glu (Fig. 4e). Consistently, amyloid forma-
tion by ApoA1 has been observed in early case reports of p.Lys131del 
(ApoA-IHelsinki

37) in which HDL-cholesterol or ApoA1 concentrations 
are only mildly changed but aggregation of misfolded ApoA1 pro-
tein can confer organ damage later in life38. Because p.Asp113Glu and 
p.Arg201Ser have not yet been identified to cause amyloidosis, we 
cannot rule out the possibility that each variant maps to distinctive 
parts of ApoA1 with subsequently different consequences on function 
and/or stability (Supplementary Fig. 4). While results for serum ApoA1 
concentrations were largely confirmed using an alternative assay, we 
observed some discrepancies that may imply that, in the presence of 
rare missense variants, the procedure to quantify ApoA1 concentra-
tions from 1H NMR spectra may need recalibration.

Phenotypic consequences of rare variation in metabolic genes
We observed a >3-fold enrichment of genes previously linked to Mendelian 
diseases39 (‘OMIM genes’) among those associated with NMR measures 
in gene burden and rare exonic variant analyses (OR 3.30, P < 6.5 × 10−17; 
Supplementary Table 11), in line with previous mGWAS1,2,7,8. For 15 out 
of 106 genes, we found evidence of significantly associated disease risk 
(P < 7.5 × 10−7), largely replicating signs and symptoms of corresponding 
rare disorders (Supplementary Note and Supplementary Table 12). When 
we tested more generally whether a rare variant burden in metabolic 
genes was associated with disease susceptibility, we observed a significant 
enrichment among susceptibility genes for endocrine and metabolic 
disorders, such as type 2 diabetes and different lipidemias but not among 
other disease categories (Supplementary Fig. 5).

Risk mitigation of atherosclerotic CVD beyond LDL cholesterol
Genetic predisposition to high LDL cholesterol is strongly associated 
with increased atherosclerotic CVD (ACVD) risk (‘level effect’), and 

Fig. 4 | Rare coding variation associated with NMR measures and convergence 
with common variant associations. a, Effect estimates against MAF of 
significantly associated gene burden (diamonds; two-sided P < 1.2 × 10−8 and 
rare exonic variants (MAF <0.05%; circles; two-sided P < 2.0 × 10−10). b, Effect 
estimates and two-sided raw −log10(P values) for associations of the rare intronic 
variant chr11:117186662:C>T within SIDT2 across all 249 NMR measures. The 
dotted horizontal line indicates the multiple testing threshold (P < 2.0 × 10−10). c, 
Genomic distance between gene burden (blue) or rare exonic variants (orange) 
toward the next common credible set variant. d, Evidence for allelic series based 
on (i) gene burden analysis (bottom), (ii) rare exonic variants (middle) and 
(iii) common variants with prioritized effector gene matching to the evidence 
from exonic analysis. For each gene, only the NMR measure most significantly 
associated with the strongest common variant is shown in cases where multiple 
NMR measures were associated. Some bars for the number of associated rare 

exonic variants have been capped to fit into plotting margin, but the number is 
given in the plot. e, Effect estimates (dots) and 95% CIs (lines) from our European-
based exWAS for 7 variants mapping to APOA1 as well as a cumulative burden of 
high-confidence pLOF variants within APOA1 and bespoke circulating measures 
of ApoA1 (clinical indicates measurements by immunoturbidimetric analysis on a 
Beckman Coulter AU5800) and HDL particles (color gradient). f, Top: a heatmap 
of standardized effect estimates (per variant) across 87 NMR measures for each 
associated variant and a cumulative burden within APOA1. Variants mapping into 
the region encoding the protein are surrounded by a rectangle. Variant effects 
have been aligned to the minor allele. Middle: the corresponding variants mapped 
to their respective transcripts encoding different forms of APOA1. Bottom: 
missense variants mapped onto the amino acid sequence of the protein. Variant 
names colored similarly had highly correlated association profiles.

http://www.nature.com/naturegenetics
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genetic variations that mimic potent drug targets, such as at PCSK9, 
show strong evidence of shared effects on both LDL cholesterol and 
ACVD (‘locus effect’)40. To identify potential pathways to mitigate the 
residual risk not addressed by lowering of LDL cholesterol41, we sys-
tematically integrated outcome data across 25 CVD phenotypes42–56 
with NMR phenotypes (Supplementary Table 13).

We identified significant evidence (false discovery rate (FDR) <5%) 
for 1,146 ‘level effects’ across 218 NMR measures with one or more of 
22 CVD phenotypes using pleiotropy-curated genetic instruments in 
Mendelian randomization (Fig. 5a and Supplementary Table 14). Inde-
pendently, we observed evidence for 5,527 ‘locus effects’, suggesting a 
shared genetic architecture (posterior probability (PP) >80%) between 
87 mQTLs associated with 247 NMR measures and 17 CVD phenotypes 
(Fig. 5b and Supplementary Table 15). For 46 NMR–CVD combinations, 
we found converging evidence for level and locus effects, including 
23 not associated in our study with parameters of LDL metabolism 
(Fig. 5b), providing potential alternatives for addressing residual car-
diovascular risk (Supplementary Table 16).

For example, we observed robust evidence that, among other 
measures related to HDL size and composition, genetic susceptibility 
to larger HDL particle size was associated with a 35% reduced risk of 
coronary artery disease (CAD; OR 0.65; 95% CI 0.50–0.83; Padj < 0.007; 
Fig. 5c) along with evidence of a shared and directionally concordant 
genetic signal at the VEGFA locus (rs4711750, PP 99%; Fig. 5e). The 
locus has been implicated in CAD risk42, and our results now sug-
gest that one likely pathway to modulate CAD risk might be via HDL 
particle size or characteristics of large HDL particles not captured 
by HDL cholesterol. Vascular endothelial growth factor A (VEGFA), 
encoded by VEGFA, is primarily known for its role in angiogenesis57 
but has been described as a regulatory factor of transendothelial 
transport of esterified cholesterol from HDL but not LDL particles 
via activation of scavenger receptor BI (SR-BI) during reverse cho-
lesterol transport58. Inhibition of VEGFA is a major pharmaceutical 
target to suppress vascularization of malignant tumors57, and agents 
targeting VEGF signaling are well known for adverse cardiovascular 
effects59, suggesting that VEGFA activation, rather than inhibition, 
might be necessary to reduce CAD risk. Our observations contribute 
to a growing body of evidence that more tailored approaches, rather 
than increasing HDL cholesterol content, will probably be needed for 
potential cardiovascular benefits, given the discouraging trials for 
most agents increasing HDL cholesterol60. We note, however, that 
HDL-particle size might still only be a ‘measurable’ surrogate, rather 
than being the true underlying mechanism. For example, inhibition 
of reverse cholesterol transport via dysfunctional SR-BI increased 
HDL particle size as well as CAD risk61.

Disease-wide Mendelian randomization screen for 
nonlipoprotein measures
Having established pleiotropy categories, we finally aimed to dem-
onstrate its application for nonlipid NMR measures in a disease-wide 
Mendelian randomization screen (Supplementary Note and 
Supplementary Table 17).

We observed converging evidence for a risk-increasing effect 
of genetically predicted plasma glycoprotein acetyl concentrations 
on type 2 diabetes risk (OR per 1 s.d. increase 1.67; P < 3.9 × 10−7) that 
persisted after exluding variants with evidence for phenotypic plei-
otropy (OR 1.69; P < 9.1 × 10−5). This is in line with the rare LoF variant 
chr20:44413714:C>T (MAF 0.02%) within HNF4A on plasma glycopro-
tein acetyl concentrations (β = 0.60; P < 8.3 × 10−15) and the cumula-
tive effect of ultrarare LoF HNF4A variants on type 2 diabetes risk (OR 
2.68; P = 6.5 × 10−10). However, we note that plasma glycoprotein acetyl 
concentrations proxy a complex chronic inflammatory state62 that 
warrants further follow-up analysis to establish mechanistic links to 
type 2 diabetes.

Discussion
The genetic basis of circulating metabolites provides insights into the 
complexity of human metabolic regulation and its subsequent influ-
ence on health and disease. By integrating common and rare genetic 
variation with circulating metabolite concentrations in 450,000 indi-
viduals from three different ancestries, we provide here a data-driven 
map of the circulating metabolome across the allele frequency spec-
trum. This map identifies previously unrecognized modulators of 
metabolism with potential health implications.

By combining machine-learning-guided common variant-to-gene 
annotation with rare exonic variation, we provided high-confidence 
effector gene assignments at >100 loci, including some with less estab-
lished roles in (lipoprotein) metabolism, such as SIDT2, presenting 
compelling candidates for functional follow-up studies in humans. 
Large-scale studies similar to ours, but with a broader coverage of 
the plasma metabolome, will probably uncover more genes with yet 
undefined roles in metabolism, complementing hypothesis-driven 
research in experimental models.

After more than two decades of GWAS, it has become clear that 
pleiotropic effects of genetic variants are ubiquitous (see, for exam-
ple, ref. 63). Little distinction has been possible beyond the generic 
concepts of ‘vertical’ and ‘horizontal’ pleiotropy or measures of simple 
counting. We refine these concepts by observing variants associated 
with dozens of NMR measures but consistent with the concept of effects 
diluting or propagating along. Conversely, we observe variants associ-
ated with comparatively few NMR measures in an inconsistent pattern, 
suggesting distinct effects on otherwise highly correlated traits. Our 
data-driven approach augments previous concepts based on biochemi-
cal pathways reporting directionally discordant pleiotropy to discover 
metabolic bottlenecks64.

Disturbance in metabolism or rearrangements thereof are a hall-
mark of many diseases, including those not classically considered as 
‘metabolic’, such as eye disorders2, but whether these are pathways for 
prevention or intervention, rather than a consequence of the disease, 
often remains elusive in humans. We demonstrated considerable over-
lap between mQTLs with disease risk loci, including rare-to-common 
allelic series that can reveal unknown effector genes. However, many 
such ‘locus effects’ were characterized by nonspecific pleiotropy, impli-
cating the plasma metabolite as a bystander rather than cause of the 
disease. This observation aligns with the relatively few notable excep-
tions, such as HDL particle characteristics and CAD, from two-sample 
Mendelian randomization (MR) analyses that contrasted the broad 
spectrum of observed disease associations described for the same 
NMR platform65. These observations might be best explained by the 
concept of metabolic flexibility, which includes built-in redundancy in 
key pathways to combat various intrinsic and extrinsic perturbations.

An important distinction of our study compared with most previous 
efforts was the availability of highly standardized measurements in a 
well-designed single large cohort, mitigating influences of preanalytical 
variables and enabling analyses of even ultrarare variants. However, this 
also meant that we had little opportunity to investigate the influence 
of different states of metabolism on our genetic results (such as an 
overnight fast) or investigate robustness of findings in different envi-
ronments or at scale in other ancestries. For example, UKB participants 
were not asked to fast overnight before their baseline visit, which has 
been shown to impact genetic findings3. Other limitations included 
the sensitivity and coverage of the 1H NMR platform, and future efforts 
are likely to reveal more diverse phenotypic consequences of geneti-
cally constrained flexibility of human metabolism. Another technical 
aspect to consider in the interpretation of our results is the indirect 
nature of 1H NMR derived measurements of certain analytes, including 
apolipoproteins, that may no longer be reliable in the presence of rare 
damaging variants that change the properties of apolipoproteins as 
observed for ApoA1.
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Methods
Study design
The UKB is a prospective cohort study from the UK that contains more 
than 500,000 volunteers between 40 and 69 years of age at inclusion. 
The study design, sample characteristics and genotype data have 
been described elsewhere66,67. The UKB was approved by the National 
Research Ethics Service Committee North West Multi-Centre Haydock 
and all study procedures were performed in accordance with the World 
Medical Association Declaration of Helsinki ethical principles for medi-
cal research. We included 460,036 individuals across the three major 
ancestries in UKB in our analyses for whom inclusion criteria (given 
consent to further usage of the data, availability of genetic data and 
passed quality control (QC) of genetic data) applied. Data from UKB 
were linked to death registries and hospital episode statistics (HES). We 
used the ancestry assignments as defined by the pan-UKB68 and further 
assigned unclassified individuals to their respective ancestries based 
on a k-nearest neighbor approach using genetic principal components. 
All analyses were conducted under UKB applications 44448 and 30418.

Metabolomic measurements
Up to 249 targeted metabolomic measurements were quantified 
using the Nightingale NMR platform in human EDTA plasma samples. 
Detailed experimental procedures for the NMR platform are described 
elsewhere65,69. The NMR platform covers a wide range of metabolic 
biomarkers, including lipoprotein lipids, fatty acids and small mol-
ecules such as amino acids, ketone bodies and glycolysis metabolites, 
quantified in molar concentration units. We combine here three data 
releases that cover the full breadth of the UKB. Metabolomics data were 
available for 482,276 individuals, including 19,699 samples with data 
from baseline and repeat visit.

Metabolites were reliably detected, with only one biomarker 
over 2.5% missingness in releases 1/2 (creatinine) and release 3 
(3-hydroxybutyrate). Ninety-eight percent of the samples had <5% 
missingness over all biomarkers in releases 1/2 and release 3. We used 
the ukbnmr70 R package (v2.2, R v4.3.2) for QC and removal of technical 
variation in the NMR data. This includes technical confounders such 
as sample preparation time, shipping plate well, spectrometer effects, 
time drift within spectrometers and outlier plates.

We removed samples that were flagged by Nightingale for poor 
quality and used the MICE (Multivariate Imputation by Chained Equa-
tions)71 R package to impute the remaining dataset. In total, we imputed 
0.16% and 0.17% of data in releases 1/2 and release 3, respectively.

We observed overall good consistency with the overlapping rou-
tine blood biomarkers previously measured in the same cohort (median 
r = 0.9, range 0.62–0.94) (Extended Data Fig. 9).

Adjustment of metabolomic data for medication use
We sought to adjust the NMR data for medication use, especially 
cholesterol-lowering medication, to avoid false-positive results driven 
by medication use in downstream genetic analyses. For male and female 
participants separately, we fit linear models to quantify the impact of 
six drug categories on each NMR phenotype: cholesterol-lowering 
medicine, blood pressure medication, diabetic medication including 
Metformin usage, oral contraceptive pill or minipill (female only) and 
hormone replacement therapy (female only) (UKB fields 6177 and 6153) 
(Supplementary Fig. 6 and Supplementary Table 18).

We used data from individuals with both baseline (NMRbaseline) and 
repeat (NMRfollow-up) assessment metabolic data available and estimated 
the effect of medication (med terms) in individuals that did not take any 
drugs at the time of the baseline visit (n = 6,312 male, n = 6,713 female 
participants) using the following model:

NMRbaseline ∼ NMRfollow-up + age + BMI

+medcholesterol +meddiabetic +medcontraception +medhormone + error.

We note that the sample sizes for diabetic medication (nmale = 45, 
nfemale = 29), oral contraceptive medication (n = 27) and hormone 
replacement therapy (n = 148) were too small to reliably estimate any 
effects. Effect estimates for diabetic medication were correlated to 
estimates for cholesterol-lowering medicine. The effect estimates for 
blood pressure medication were minimal across the phenotypes. We 
considered thus only the impact of cholesterol-lowering medicine and 
corrected the metabolic data in a sex-specific manner.

Genotyping and GWAS analyses
GWAS was performed on 249 metabolic traits measured by the NMR 
platform on British European (n = 434,646), British Central/South 
Asian (n = 8,796) and British African participants (n = 6,573) that had 
complete phenotypic, covariate and genetic information available. 
We used the Haplotype Reference Consortium-imputed genetic data, 
including all autosomal chromosomes and the X chromosome. We 
performed GWAS under the additive model using REGENIE (v3.2.5)72 
that uses a two-step procedure to account for population structure. 
We derived a set of high-quality genotyped variants per population 
by applying the following filters: (MAF >1%, minor allele count (MAC) 
>100, missingness rate <10%, PHWE > 1 × 10−15). Furthermore, linkage 
disequilibrium pruning was performed using a 1,000-kb window, 
shifting by 100 variants and removing variants with LD (r2) >0.8. We 
used these variants as input for the first step of REGENIE to generate 
individual trait predictions using the leave-one-chromosome-out 
scheme. These predictions are used in the second step where individual 
variants are tested. Models were adjusted for age, sex and the first ten 
genetic principal components. We tested variants with a MAF >0.5%, 
amounting to 11.5 million variants in British European individuals, 11.5 
million variants in British Central/South Asian individuals and 19.3 
million variants in British African individuals.

For initial discovery, we performed a meta-analysis across the three 
ancestral groups using METAL73. We required variants to be present in 
at least two ancestral groups. To declare significance, we considered 
a stringent P-value threshold (2.0 × 10−10) by dividing the standard 
genome-wide threshold by the number of metabolic phenotypes 
(5.0 × 10−8/249).

We tested our results for genomic inflation and calculated the 
single-nucleotide polymorphism (SNP)-based heritability using 
LD-score regression74 (Supplementary Table 19).

Regional clumping and fine-mapping
We used regional clumping (±500 kb) around sentinel variants from 
the analyses including British European samples to select independent 
genomic regions associated with a metabolic phenotype and collapsed 
neighboring regions using BEDtools (v2.30.0). We treated the extended 
MHC region (chr6: 25.5–34.0 Mb) as one region.

Within each region of interest, excluding the MHC region, we per-
formed statistical fine-mapping for all phenotypes associated with that 
region using the ‘Sum of single effects’ model (SuSiE) implemented in 
the susieR (v0.12.35) R package75. In brief, SuSiE uses a Bayesian frame-
work for variable selection in a multiple regression problem with the 
aim to identify sets of independent variants each of which probably 
contains the true causally underlying genetic variant. We implemented 
the workflow using default prior and parameter settings, apart from 
the minimum absolute correlation, which we set to 0.1. Because SuSiE is 
implemented in a linear regression framework, we used the GWAS sum-
mary statistics with a matching correlation matrix of dosage genotypes 
instead of individual-level data to implement fine-mapping (susie_rss()) 
as recommended by the authors75.

To determine the appropriate number of credible sets within each 
region, we iterated over the maximum credible sets parameter in susieR 
from two to ten, thus generating fine-mapped results constrained to a 
range of maximum number of credible sets. For each collection of cred-
ible sets, we pruned sets where the lead variant was correlated to the 
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lead variant of other credible sets (r2 > 0.25). After pruning, we consid-
ered the fine-mapped results with the largest number of credible sets.

We performed several sensitivity analyses by computing joint 
models per locus–phenotype combination, jointly modeling the effect 
of all distinct lead credible set variants in a single linear model. Subse-
quently, we retained only credible sets where the lead variant reached 
genome-wide significance (P = 5.0 × 10−8) in both marginal and joint 
statistics. Furthermore, we ensured the estimated coefficients were 
directionally concordant and of similar magnitude between joint and 
marginal models (±25%). Linear models were implemented in R using 
the glm() function and used only unrelated British European partici-
pants and the same set of covariates as described above.

Finally, we used LD clumping (r2 > 0.6) to identify credible sets 
shared across metabolic phenotypes.

We computed the correlation matrix with LDscore v2.0 using 
genetic data from 50,000 randomly selected, unrelated White Euro-
pean UKB participants. In situations where SuSiE did not deliver a 
credible set, we used the Wakefield approximation76 to compute 
95%-credible sets.

Replication of genetic associations
We replicated our trans-ancestral genetic signals using two independ-
ent studies: (1) the so-far largest published mGWAS3 and (2) a par-
allel effort using overlapping UKB data9, both using the same NMR 
platform. We considered a set of metabolic traits that were directly 
measured by the NMR platform and not inferred from other traits 
to avoid multiplicative errors in these more sensitive phenotypes. 
In total, we were able to match 144 (Karjalainen et al.3) and 169 (Tam-
bets et al.9) metabolic traits, for which we compared sentinel variants 
that passed metabolome-adjusted, genome-wide significance in our 
trans-ancestral meta-analysis and that overlapped between the studies.

Causal gene assignment
To assign candidate genes for all metabolite QTLs residing outside the 
MHC region, we first collected annotations for each genetic variant 
or proxies thereof (r2 > 0.6), including distance to the gene body and 
putative functional consequences based on the Variant Effect Predic-
tor (VEP) tool offered by Ensembl. We further collated up to ten closest 
genes within a 2-Mb window and subsequent gene features such as: (1) 
eQTL evidence for a given variant–gene pair for each tissue available 
in the eQTL Catalogue release 777; (2) evidence of being annotated as 
metabolic in the MGI or Orphanet databases as defined in ProGem19; 
(3) evidence of being listed in the Online Mendelian Inheritance in Man 
(OMIM) database39; (4) and evidence of being an already assigned drug 
target in Open Targets78 clinical stages III and IV.

With no universally accepted standard for variant-to-gene assign-
ments, we relied on prior biological and genomic information to create 
three sets of ‘putative true positive’ (PTP) set: genes part of cholesterol 
pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG)79 
or REACTOME80 database (n = 6,791, 722 unique SNPs), lipid pathway 
(n = 5,670, 603 unique SNPs) and amino acid-related pathway (n = 8,349, 
895 unique SNPs). We used all fine-mapped SNPs associated with 
metabolites classified in the respective NMR metabolite class (Cho-
lesterol: cholesterol, cholesteryl esters, free cholesterol; Lipid: total 
lipids, other lipids, relative lipid concentration, phospholipids; Amino 
Acid: amino acid) in the PTP set and used overlapping SNPs in only one 
PTP set. We trained (7:3 training:test ratio without overlapping variants) 
a random forest classifier using fivefold cross-validation with subsam-
pling to account for the unbalanced datasets (scikit-learn v1.4.1). We 
used the balanced accuracy score to choose the best-performing forest 
from each training set. Subsequently, we used the best-performing 
classifier from each PTP set to assign candidate scores for all putative 
effector genes across the entire set of metabolite QTLs. We calculated 
the median score across classifiers and selected the highest-scoring 
gene per variant. Within each PTP set, we omitted features used to 

define true positive sets. Each of the three classifiers exhibited consist-
ent performance (mean ROC-AUC: 0.80, mean balanced accuracy score 
0.69) (Supplementary Fig. 7). We used the sum across all three classi-
fiers to assign effector gene scores but present only genes as potential 
effector genes that reached sufficient support as indicated by largest 
difference between consecutively prioritized genes.

To provide another layer of evidence for assignment of causal 
genes at metabolic loci, we performed cis-colocalization with protein 
targets measured in the independent Fenland study22. Cis (for exam-
ple, gene body ± 500 kb) summary statistics were preprocessed using 
MungeSumStats81. To relax the single causal variant assumption, we 
used a colocalization approach where we fine-mapped all traits with 
SuSiE and then performed colocalization among all credible sets using 
functionality of the coloc (v5.2.3)82,83 and susieR (v0.12.35)75 R packages. 
For this, we set the prior probability that a SNP is associated with both 
traits to 5 × 10−6 and restricted the maximum number of credible sets 
for the outcome data to five82.

Tissue enrichment of metabolic loci
We tested whether genes proximal to metabolic loci and assigned effec-
tor genes were enriched in tissue compartments by leveraging data 
from the Human Protein Atlas84. Specifically, we used a two-sided Fish-
er’s test whether metabolic genes were enriched among tissue-specific 
genes (tissue-enriched or tissue-enhanced as defined by the Protein 
Atlas) against all protein-coding genes as background.

Pleiotropy assignment and overlap with the GWAS Catalog
To assign modes of pleiotropy for each mQTL, we first clumped lead 
credible set variants across NMR measures by LD, collating variants 
with r2 ≥ 0.6 as a single signal, referred to hereafter as mQTL group. 
This was done based on dosage files of all unrelated British European 
UKB participants and implemented with the igraph (v.2.0.1.1) package 
in R. For each mQTL, we computed pairwise Pearson correlation coef-
ficients among associated NMR measures. We classified each mQTL 
group on: (1) the 25th percentile of all pairwise correlations, and (2) the 
Pearson correlation coefficient between the association strengths for 
each measure (− log10(P value)) and its correlation coefficient with the 
most strongly associated measure within the mQTL. The latter is a meas-
ure to what extent the association between NMR measures at a given 
locus (‘pleiotropy’) can be explained by being correlated with the most 
proximal associated measure. Based on opposing those two measures 
for all mQTLs we defined the following five groups: (1) ‘specific’ mQTLs 
associated with only ≤3 highly correlated NMR measures (rho ≥0.6); (2) 
‘pathway pleiotropic’ mQTLs associated with highly correlated NMR 
measures (rho ≥0.6) that followed the described association pattern 
(rho ≥0.6); (3) ‘proportional pleiotropic’ mQTL groups associated with, 
in part, uncorrelated NMR measures but highly correlated association 
statistics (rho ≥0.6); (4) ‘disproportional pleiotropic’ mQTLs associated 
with highly correlated NMR measures (rho ≥0.6), but without evidence 
that this translated into a correlation of association statistics (rho 
<0.6), and; (5) all remaining mQTLs as ‘unspecific pleiotropic’ groups.

To quantify the extent to which our pleiotropy assignment 
extends beyond the NMR measures analyzed here, we intersected 
mQTLs and proxies thereof with results reported in the GWAS Catalog 
(downloaded 20 May 2024). We first pruned GWAS Catalog entries 
for those with mapped traits (to minimize double counting), results 
that met genome-wide significance (P < 5 × 10−8) and had location 
information available. We further dropped results similar to NMR 
measures based on broad Experimental Factor Ontology (EFO) terms 
(for example, EFO:0005105 and child terms indicating ‘lipid or lipopro-
tein measurement’). To further account for traits mapping to similar 
categories, we iteratively traced back-mapped EFO terms to broader 
parent terms. We finally classified mQTLs to be ‘specific’ in the GWAS 
Catalog if they associated with fewer than five parent EFO terms and 
‘unspecific’ otherwise.
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Integration with cardiovascular endpoints
We next aimed to investigate the shared genetic basis of the 249 NMR 
and 25 selected CVD traits. We utilized public databases (GWAS Cata-
log, openGWAS, CVD-KP) to collect CVD data comprising the largest 
currently publicly available GWAS datasets on CAD and myocardial 
infarction, angina pectoris, aortic aneurysm, heart failure and stroke, 
and peripheral arterial disease, including two to five subtypes for some 
phenotypes (Supplementary Table 13). Data were harmonized and, if nec-
essary, lifted over to GRCh37 using the MungeSumstats (v1.13.2) R pack-
age81. We queried mQTL lead variants and proxies in strong LD (r2 > 0.8; 
LD backbone based on UKB, as described above) of each NMR trait in 
each region and corresponding summary statistics for each CVD trait.

To investigate ‘locus’ effects, we performed statistical colocaliza-
tion for all combinations of the NMR traits–CVD traits as described 
before (see ‘Causal gene assignment’ section).

To estimate ‘level’ effects of NMR metabolite concentrations on 
CVD outcomes, we performed Mendelian Randomization analysis using 
the TwoSampleMR package (v0.5.1), implementing the inverse-variance 
weighted and the MR-Egger methods. We used all 249 NMR metabolites 
as exposure variables, the 25 CVDs as outcome variables and assessed 
separately four sets of instruments: (1) sentinel variants, (2) lead cred-
ible set variants, (3) lead credible set variants restricted for molecular 
pleiotropy (for example, ‘pathway pleiotropy’) and (4) lead credible set 
variants restricted for both molecular and phenotypic pleiotropy. We 
used the Wald ratio method to estimate the effect of NMR concentra-
tions on CVD outcomes using only single genetic variants85. We used 
MR-Egger to test for evidence of a pleiotropic association, an intercept 
P value >0.0001 indicating evidence of no pleiotropy and checked 
for concordance between the effect estimates of inverse-variance 
weighted Mendelian randomisation (IVW-MR), MR-Egger and single 
genetic variant MR. We controlled the FDR at 5% (ref. 86). To further 
limit the possible extent of pleiotropic associations, we only reported 
‘level effects’ passing these filters in the variant sets 2–4, prioritizing 
the association in the more stringent variant set.

The overlap of ‘locus effects’ showing no ‘disproportional pleiot-
ropy’ according to the section ‘Pleiotropy assignment and overlap with 
the GWAS Catalog’ as well as a significant single variant MR (FDR 5%) 
and ‘level effects’ calculated from metabolite-specific or metabolite- 
and phenome-specific variants was used to identify gene–metabolite 
pairs associated with CVD risk independent of LDL metabolism. We 
considered loci as independent from LDL metabolism if they did not 
associate with clinical LDL cholesterol at the locus with P < 2.0 × 10−10 
and the effect estimate of any variant on clinical LDL-C ranked upward 
the 80th percentile of all effect estimates at the locus.

Whole exome sequencing data QC for rare variant analyses
An in-depth description of whole exome sequencing, including experi-
mental details, variant calling and standard QC measures for the UKB 
has been extensively reported by Backman et al.87. We performed addi-
tional QC steps at the UKB Research Analysis Platform (RAP; https://
ukbiobank.dnanexus.com/).

We used bcftools (v1.15.1) to process population-level Variant 
Call Format (pVCF) files. Initially, we normalized the data using the 
reference sequence GRCh38 build, followed by splitting multiallelic 
variants. Subsequently, we conducted QC on these variants using a set 
of parameters outlined below to filter high-quality variants for down-
stream genetic analyses. Genotypes for SNPs were set to missing if the 
read depth was less than 7 (or less than 10 for INDELs) or if the genotype 
quality was below 20. Furthermore, we excluded variants if the allele 
balance was less than 0.25 or greater than 0.8 in heterozygous carriers. 
Finally, we excluded variants with missingness >50%.

Variant annotation and gene burden masks
Variants were annotated using ENSEMBL VEP88 (v106.1) with the most 
severe consequence for each variant chosen across all protein-coding 

transcripts. We further utilized additional plugins REVEL89, CADD v1.690 
and LOFTEE91 for variant annotation. Based on these scores, we defined 
six partially overlapping variant masks: (1) high-confidence predicted 
LoF (pLOF, based on LOFTEE and includes stop-gained, splice site dis-
rupting, and frameshift variants); (2) any pLOF assigned high impact 
by VEP; (3) pLOF and high-impact missense variants (CADD score >20 
or REVEL score >0.5); (4) pLOF and any missense variants; (5) only 
high-impact variants; and (6) any missense variants but not pLOF. We 
tested synonymous variants separately as a negative control. We tested 
each mask in different MAF bins, using 0.5% and 0.005% as thresholds.

We performed rare variant association testing (RVAT) using whole 
exome sequencing (WES) data across 249 NMR phenotypes using REG-
ENIE (v3.1.1) via the DNAnexus Swiss Army Knife tool (v4.9.1). Similar 
to common variant GWASs, we used a two-step approach by REGENIE. 
We additionally generated step 1 leave-one-chromosome-out (LOCO) 
files with and without adjusting for common signals via a polygenic 
score (PGS derived from all lead credible set variant per NMR trait) in 
the RVAT models per phenotype. All RVAT models were then adjusted 
for PGS in addition to age, biological sex, fasting duration and the first 
ten genetic PCs. We first performed aggregated gene burden testing 
across for 19,026 genes using a set of masks as defined above. For 
gene burden testing, we used the aggregated Cauchy association test 
to estimate P values for each gene across masks and allele frequency 
bins. The aggregated Cauchy association test first computes P values 
for all sets defined by various masks within a gene and then takes these 
P values as input to compute one P value for the respective gene via a 
well-approximated Cauchy distribution.

We performed single variant association testing for exonic vari-
ants (ExWAS). For the ExWAS, we tested variants with MAC >5 and 
reported results for variants with MAF <0.0005. We have performed 
these analyses in individuals of British European, British African and 
British Central/South Asian ancestry.

We considered f indings as robust if  they passed 
multiple-testing-corrected statistical significance (gene burden: 
P < 1.2 × 10−8 (corrected for the number of genes × number of traits); 
ExWAS: P < 2.0 × 10−10 (same as for common variant GWAS, conventional 
genome-wide significance corrected for the number of traits)) in both 
the model with and without adjusting for the common variant PGS and 
effect sizes did not differ by more than 20% between these models, as 
this might otherwise indicate that rare variant findings cannot clearly 
be distinguished from common variant effects.

Phenotype definition
To systematically test for phenotypic consequences of genes identified 
through rare variant analysis, we collated 626 disease entities following 
previous work1 by aggregating information from self-report, HES, death 
certificates and primary care data (45% of the UKB population). Each 
disease entity had at least one significant common variant, and we used 
a similar analysis workflow using REGENIE as described for NMR meas-
ures but using logistic regression with saddle point approximation.

Integration of OMIM
We downloaded the OMIM gene–disease list (9 November 2023) and 
kept 7,327 unique entries after filtering for gene entries with high confi-
dence (level 3). We computed the enrichment of genes associated with 
any NMR measure from rare variant or gene burden analysis against a 
background of 19,989 protein coding genes using Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All individual-level data are publicly available to bona fide researchers 
via the UKB at https://www.ukbiobank.ac.uk/. Full summary statistics 
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for all analyses are publicly available through the NHGRI-EBI GWAS 
Catalogue (GWAS Catalog identifiers GCST90497044–GCST90501341; 
see GitHub repository).

Code availability
Code for the main analyses is freely available via GitHub at https://
github.com/comp-med/ukb-mgwas and permanently archived via 
Zenodo at https://doi.org/10.5281/zenodo.14716599 (ref. 92).
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Extended Data Fig. 1 | Graphical outline of the study design. EUR, European ancestry; CSA, Central/South Asian ancestry; AFR, African ancestry.
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Extended Data Fig. 2 | Independent replication of genetic signals.  
a, Replication of estimated genetic effects on circulating metabolites in 
Karjalainen et al.3. Bar plots represent the correlation of effect sizes (top), 
correlation between the P-value (middle), and the fraction of our sentinel 

variants that reached genome-wide significance in the replication study 
(bottom). b, Identical to a but using data from Tambets et al.9. For both 
comparisons, we only considered directly measured traits.
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Extended Data Fig. 3 | Cross-ancestry comparison of genetic effects.  
a, b, Cross-ancestry comparison of estimated genetic effects. Comparing 
estimates (points) obtained within UK Biobank participants of European ancestry 

(x-axis, n = 434,646) to those of British Central/South Asian ancestry (n = 8,796) 
(a) or British African ancestry (n = 6,573) (b). Bars denote standard errors of the 
estimates.
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Extended Data Fig. 4 | Plasma metabolome variance explained by genetics. Variance explained by fine-mapped lead variants on metabolomic concentrations. Each 
dot represents a metabolite, colored for biochemical class. Boxplot center refers to the median, bounds are the upper and lower quartiles, and whiskers indicate 1.5× 
interquartile range.
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Extended Data Fig. 5 | Association profile for PNPLA3. Forest plot showing the strongest associated NMR traits for rs3747207, previously associated with 
LDL-cholesterol. Stars represent whether traits are significantly differently associated compared to LDL-cholesterol. Effect estimates (dots) and standard errors of the 
estimate (bars) are taken from the European ancestry-based GWAS (n = 434,646).
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Extended Data Fig. 6 | Effector gene tissue enrichment. a, b, Odds ratios for 
enrichment of assigned effector genes (a) and genes proximal to fine-mapped 
lead variants (b) across tissue compartments. Columns represent each of the 

249 metabolic traits, annotated for biochemical class. Rows and columns were 
clustered based on Euclidean distance. Odds ratios are derived from a two-sided 
Fisher’s test.
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Extended Data Fig. 7 | Different modes of metabolomic pleiotropy. a, 
Scatterplot opposing mQTL characteristics. The x-axis denotes for each mQTL 
the 25th percentile of all possible correlations among associated NMR measures. 
The y-axis depicts the correlation between the strongest trait of interest and 
the association strength for all other traits. A value of one would indicate that 
all other associated NMR measures can be directly explained as function of 
correlation, whereas a value of zero would indicate independent effects of the 

mQTL on different measures. b, Bar plot showing number of variants for each 
mode of pleiotropy. c-f, Same Pearson correlation networks of NMR measures, 
clustering highly correlated traits by spatial proximity. Each node is colored 
according to the strength of associations ( − log10(P-value)) with one of the 
four genetic variants indicated in the title of each plot. Variants were chosen to 
represent each of the four modes of pleiotropy.
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Extended Data Fig. 8 | Rare and common variant convergence in metabolic genes. Convergence of gene burden (blue) and common variant (orange) burden results 
for genes involved in cholesterol metabolism.
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Extended Data Fig. 9 | Comparison of NMR measures with blood biomarkers. Comparison of eight metabolic traits measured on the NMR platform (x axis) 
overlapping with routine blood biomarkers previously measured in the same cohort (y axis).
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