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Genetic studies of human metabolism have been limited in scale and allelic
breadth. Here we provide a data-driven map of the genetic regulation of
circulating small molecules and lipoprotein characteristics (249 traits)
measured using proton nuclear magnetic resonance spectroscopy across
the allele frequency spectrumin~450,000 individuals. Trans-ancestral
meta-analyses identify 29,824 locus—metabolite associations mapping to
753 regions with effects largely consistent between men and women and
large ancestral groups represented in UK Biobank. We observe and classify
extreme genetic pleiotropy, identify regulators of lipid metabolism, and
assign effector genes at >100 loci through rare-to-common allelic series. We
propose roles for genes less established in metabolic control (for example,

SIDT2), genes characterized by phenotypic heterogeneity (for example,
APOAI) and genes with specific disease relevance (for example, VEGFA).
Our study demonstrates the value of broad, large-scale metabolomic
phenotyping to identify and characterize regulators of human metabolism.

Our understanding of human metabolismis mostly based on dedicated
hypothesis testing in experimental settings, informed by model organ-
isms or observations in patients with rare diseases. Only recently has
high-throughput profiling of small molecules in large-scale studies
enabled systematic testing of genetic variation across the genome and
provided an agnostic approach for discovering genes that encode key
metabolic regulators'™. These efforts have provided important new
insightsinto how genetic variation shapes human chemical and meta-
bolicindividuality' and have corroborated alarge body of biochemical
knowledgel'z’lo’u.

The importance of such genome-metabolome-wide associa-
tion studies (MGWAS) extends beyond the mapping of biochemical
pathways, sometimes demonstrating almostimmediate clinical value.
They provided examples of how readily available supplementation
strategies may prevent disease or delay onsetin high-riskindividuals,

such as serine for macular telangiectasia type 2, a rare eye disorder?.
They further identified unknown variants that affect the absorption,
distribution, metabolism and excretion of exogenous compounds,
most importantly drugs*, thereby providing pathways to mitigate
adverse drug effects. However, there are several challenges that cur-
rently limit the potential of mGWAS analyses, particularly for causal
inference. These include (1) the still rather small number of, at most, a
dozen genetic variants linked to single molecules, (2) the inability to
distinguish whether pleiotropic variants act on different molecules
or pathways independently (horizontal pleiotropy), or whether they
serve as ‘root causes’ of successive downstream changes (vertical
pleiotropy), (3) the difficulty in distinguishing between locus-specific
and metabolite abundance effects when colocalization at disease-risk
lociis observed'and (4) the challenge of confidently assigning effector
genes at newly identified loci.
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Here, we integrated rare (based on whole exome sequencing) and
common genetic variation with measures of 249 metabolic pheno-
types, including small molecules and detailed lipoprotein character-
istics,among >450,000 UK Biobank (UKB) participants representing
three distinct ancestries. We demonstrate largely consistent genetic
regulation across ancestries and sexes for almost 30,000 locus-
metabolite associations and systematically categorize abundant
genetic pleiotropy. By integrating machine-learning-derived effector
gene assignments with rare exonic variation, we identify previously
unknown regulators of metabolism and observe heterogeneity in
association profiles for variants mapping to the same gene. Finally,
we demonstrate how systematic integration of statistical colocaliza-
tion and Mendelian randomization can identify pathways with the
potential to mitigate cardiovascular disease (CVD) risk beyond current
approaches focused primarily on lowering low-density lipoprotein
(LDL) cholesterol.

Results

We integrated genome-wide association studies (GWAS;
population-specific minor allele frequency (MAF) >0.5%) with rare
exome-wide association studies (ExXWAS; MAF <0.05%) on plasma
concentrations of 249 metabolite phenotypes, quantified using 'H
nuclear magnetic resonance (NMR) spectroscopy. We included up
to 450,000 UKB participants across three major ancestries (British
White European, EUR (n =434,646); British African, BA (n=6,573);
British Central/South Asian, BSA (n = 8,796)) (Extended Data Fig. 1).
The NMR measures comprised 14 lipoprotein subclasses and associ-
ated characteristics (that is, extra-large very-low-density lipoprotein
(VLDL) to small high-density lipoprotein (HDL) particles), along with
small molecules such as amino acids and ketone bodies quantified in
molar concentration units (Supplementary Table 1).

Common genetic variation underlying circulating metabolites

We identified 29,824 regional sentinel-NMR measure associations
in trans-ancestral meta-analyses, representing 753 nonoverlapping
genomic regions (Fig. 1a and Supplementary Table 2). Nearly half of
theseregions (n =359,47%) associated with more than ten NMR meas-
ures, demonstrating considerable pleiotropy. Characteristics of large
HDL particles, such as particle size and lipid composition, were asso-
ciated with the largest number of regions (median 166, interquartile
range 126-195), compared with all NMR measures (median 105, inter-
quartilerange 68-142), findings that considerably extended previous
work® and replicated parallel efforts using UKB’ (Extended DataFig. 2).
Genes with well-characterized roles in human metabolism were signifi-
cantly enriched across different significance bins (adjusted P values
<4.24 x107% Supplementary Fig. 1), suggesting that ever-larger studies
of omnigenic traits, such as metabolites, still yield biological plausible
findings.

We observed significant evidence of heterogeneity (P<1x107%)
across ancestries for very few loci (n = 342;1.14%), and ancestral-wise
comparison of effect estimates demonstrated largely con-
cordant effect estimates (Fig. 1c,d, Extended Data Fig. 3 and
Supplementary Table 3). All sentinels seen in individuals of British
African and British Central/South Asian ancestry were replicated
in individuals of European ancestry, except for one locus that was
specific to British Africans. The previously reported™ missense vari-
ant rs3211938 within CD36, which is common among individuals of
Africanancestry (MAF;,=0.12) but absent amongindividuals of Euro-
pean ancestry (MAF; = 0.0), was significantly associated (P values
<1.49 x10°) with lower plasma concentrations of omega 3 fatty acids
and 15 other NMR measures, including lipoprotein particle charac-
teristics. Thisis in line with the role of CD36 encoding for a fatty acid
translocase, facilitating the recognition and uptake of long-chain fatty
acids. We note that the sample sizes in the smaller ancestral groups
did not permit comprehensive replication.

Sex-differential effects at loci encoding metabolic genes

While we observed highly correlated effect sizes across female and
male participants (median r=0.98, range 0.90-0.99), we also identified
360 putative sex-differential loci for 239 NMR measures, represent-
ing 1,800 heterogenous associations in sex-stratified meta-analyses
(heterogeneity Pvalue <5 x 10°%), most of which (65.3%; n=1,175 loci)
could not be explained by confounding factors (Supplementary
Note, Supplementary Fig. 2 and Supplementary Table 4). Putative
sex-differential loci were generally directionally concordant between
the sexes (Fig. 2a), in line with previous proteomics analyses and sug-
gesting that significant sex interactions do not reflect sex-discordant
effects®.

Refinement of regional associations through multi-ancestry
fine-mapping

We next used a two-stage strategy to refine regional associations
to asmaller number of candidate causal variants. We first identi-
fied 3,007 statistically independent metabolite quantitative trait
loci (mQTLs) associated with one or more NMR measure, repre-
senting a total of 43,322 credible set—-NMR measurement pairs
(Supplementary Table 5). Lead fine-mapped mQTLs per NMR trait
explained on average 6.9% (range 0.57-13.42%) of variance in plasma
metabolite concentrations (Extended DataFig. 4).Second, we lever-
aged the different linkage disequilibrium (LD) structure in British
African and British Central/South Asianindividuals to further refine
3,386 credible sets that contained >1 variant and with suggestive
evidencein either ancestry, leading to anincrease in the number of
credible sets with high-confidence variants and decrease in mean
credible set size from 9 to 4 variants (Supplementary Note and
Supplementary Fig. 3). Trans-ancestral fine-mapping improved reso-
lution in loci that did not resolve in individuals of European ances-
try alone, but we note that the overall improvement was marginal.
Instead of refining already tight credible sets, future studies should
therefore focus on scaling discovery in non-European ancestries to
identify unknown causal variants.

Biological reclassification of established ‘lipid’ loci

To assess the value of metabogenomic studies of 'H NMR-
spectrometry-based lipoprotein profiling over standard clinical mark-
ers, we classified NMR metabolome association profiles for 1,657
genetic variants reported for commonly measured clinical markers
(LDL cholesterol, HDL cholesterol, total cholesterol and triglycerides)
obtained in 1.6 million people’. Around 25% of associated variants
had the corresponding NMR measure among the top 10% of the most
strongly associated NMR measures, with 22.5% of genetic variants
showing significantly stronger association with refined lipoprotein
measures compared with their matching measure on the NMR platform,
an observation most pronounced for non-HDL and LDL cholesterol
concentrations (Fig. 2b). Relevant loci for lipoprotein metabolism
canthusbe discovered using readily available clinical measurements;
however, refined lipoprotein profiles are necessary for better under-
standing the relevant biological pathways, including any inference
about druggability or use for genetic causal inference methods. One
such example was the PNPLA3 locus (tagged by rs3747207, associ-
ated with LDL cholesterol by the Global Lipids Genetics Consortium;
B=-0.014,P=2.3 x10™%), where we observed no association with LDL
cholesterol (8=-0.001, P= 0.49) but with LDL particle size (8 = 0.045,
P=1.04 x107), and multiple characteristics of extra-large VLDL
particles (Extended Data Fig. 5). The intronic rs3747207 variant is in
strong LD (r* = 0.98) with the well-known missense variant rs738409
(p.lle148Met) that has been demonstrated to confer hepatic lipid
accumulation by altering ubiquitination of patatin-like phospholipase
domain-containing protein 3 (PNPLA3)". Our results provide human
genetic support forarecently proposed role of PNPLA3 inthe secretion
oflarge VLDL particles’®.

Nature Genetics | Volume 57 | October 2025 | 2445-2455

2446


http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs3747207
https://www.ncbi.nlm.nih.gov/snp/?term=rs3747207
https://www.ncbi.nlm.nih.gov/snp/?term=rs738409
https://www.ncbi.nlm.nih.gov/snp/?term=rs3211938

Article

https://doi.org/10.1038/s41588-025-02355-3

< E ® ,:(_r g g 0]
2 r < < 2
53 5% Za 3 . & g o % 25 & o 8z ST oBs.
S = o < ~ Q = < 5 Q =20
89 8 =% € 5 9 82 £ g & g% = S 89 0% 3%z
88 00| ®¢ o® o Yo & ¢ o et o ¢ &% o
o 0
L © 100 4
o Q
Q=
E 0 gl ot B [ S ool Qoo =y *F = o §omee
[2 3T H ] . € % 1 iau .
25 a4 64 I FNE AR E'i LR SR EXiE s
Q H 3 ] B S 1758 B :
: s | 5o - | A i
p £ 3iek HL 313k ,
1 7 L3 |8 i ¢ €og ol odlifom I !am [}
§ 'L ‘M B 4 . “-_1 s |2’y .
R 1o ¥ afurtigy W |5
i R i i b 2 B P :

249 ordered metabolic phenotypes

i it JNRE L IOR Ly & PN J "
. \ : ! ! :
s il 1 ‘nl l ] 1[I
l. fi || ll Bl | i' i, ll |
i e " a':;: e e Bre @i b *
' .n-' I cofe dpbfes i ’ i =
& P B ot ‘l.’ ‘1
E ﬁ"f g AN “':. T
. r l .
RE DR (o ¢ o obf: Yorplp dvp g0 |- 3 !
T o ® ¥ i © N ® 2 2o £ & e ¥ %
Chromosomal position
® Inflammation ® Free cholesterol ® Total lipids ® Fatty acids
@ Fluid balance ® Glycolysis-related metabolites o Triglycerides Relative lipoprotein lipid concentrations
® Apolipoproteins ® Ketone bodies © Other lipids ® Lipoprotein subclasses

® Lipoprotein particle sizes

® Cholesteryl esters Phospholipids

@ Lipoprotein particle concentrations

@ Cholesterol

@ Amino acids
Absolute Z score

25 >50
b ¢ 0.6 d,\ 0.6
C
©
‘@
- <<
o o 03+ o oc 03
= &g 55 L
5 EE " ES ;
- e S 0= 3
2 8T o i 8% o W
© =5 . S
E = 3 3 &
& 5 g £3
-03 4 .. <
i 0
) b=
)
0o 01 02 03 04 05 -0.3 0o 0.3 0.6 -0.3 0] 0.3 0.6

MAF

Fig.1| Common genetic regulation of circulating metabolites. a, A top-down
Manhattan plot showing trans-ancestral sentinel variants for 249 metabolic
phenotypes at a metabolome-adjusted genome-wide significance threshold of
P<2.0x107° Each row represents an NMR measure, colored for biochemical
class. Chromosomal positions are shown on the x axis. Pvalues are raw -
log,o(Pvalue) from a two-sided Ztest across effect estimates derived within
three ancestral groups. b, Weighted average allele frequency compared with

Effect estimate (European)

Effect estimate (European)

estimated effect size for trans-ancestral sentinel variants. Points are colored for
biochemical classification. ¢, Acomparison of effect sizes between British White
European samples (x axis) and British African samples (y axis). We considered
variants that were significant in either population. d, Similar to c but comparing
British Central/South Asian samples. Dots are colored according to their absolute
Zscorein British White European samples.

Machine-learning-guided effector gene assignment

We successfully assigned effector genes for almost three-quarters of
European ancestry fine-mapped mQTLs (73.6%; n = 2,213) with at least
moderate confidence (candidate gene score >1.5, range 0-3), including
about 28.2% with high-confidence assignments (score >2; n = 848), by
training amachine learning model that integrates functional genomic
resources with pathway information inspired by the ProGeM frame-
work” (Supplementary Table 6). For example, we prioritized the fatty
acid elongase gene FLOVL6 for 16 different VLDL/HDL characteristics

(tagged by rs3813829). The gene product, ELOVL fatty acid elongase 6,
catalyzes the rate-limiting step in long-chain fatty acid elongation,
which are subsequently incorporated into lipoprotein particles. We also
prioritized genes with upstreamroles in metabolism, including alocus
on 17q25.3 where we prioritized cytohesin-1 (CYTHI) as the putative
effector gene for 5independent genetic variants linked to 11 distinct
NMR measures mostly comprising characteristics of VLDL particles.
CYTHI, previously associated with type 2 diabetes?®, promotes activa-
tion of ADP-ribosylation factors (ARF)1, ARF5and ARF6, regulators of
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205 lipid-related NMR traits were ranked based on their absolute effect size and
compared with the NMR trait that corresponds the Lipids Genetics consortium
trait. Pie charts show the percentage of loci where the corresponding NMR
traitis ranked among the top 10% of associated traits. TC, total cholesterol; TG,
triglycerides.

lipid vesicle transport, membrane lipid composition and modification?,
demonstratingarelevantbutindirectlink to lipoprotein metabolism.
We observed considerable overlap of machine-learning-guided
effector gene predictions (top three genes) with those reported
based on manually curated biological plausibility (191 out of 283
loci)® or based on colocalization with protein quantitative trait loci
(pQTLs) that have not been used to train the algorithm® (81 out 0f 143;
Supplementary Table 6). While missing overlap indicates room for
improvement, 24 high-confidence assignments strongly disagreed
with either external source (gene score >2but no matchamong pQTLs
prioritized or manually curated ones). For example, we prioritized PEPD
(score 2.42) as opposed to CEBPA*for rs62102718. PEPD encodes pepti-
dase D, which has been shown to promote adipose tissue fibrosis in
mouse knock-out models promotinginsulin resistance”. Insulin resist-
ance, inturn, provides a very plausible explanation for the pleiotropic
effect of the variant on diverse lipoprotein characteristics (n = 31).

Tissue distribution of effector genes

Assigned effector genes were significantly enriched in different tis-
sues, reflecting known and lesser-established organ contributions
(Extended DataFig. 6aand Supplementary Table 7). Genes character-
isticoftheliver, adipose tissue, adrenal gland and female breast tissue
(probably reflectingits high adipose tissue content) were significantly
enriched among effector gene sets across the metabolic measures
captured by NMR. This included significant enrichment of all amino
acidsinliver tissue (for example, phenylalanine: odds ratio (OR) 14.8,
P<1.3x107% histidine: OR 7.9, P< 2.9 x 10™) but also for skeletal muscle
in alanine metabolism (OR 3.82; P< 7.9 x107°). Similar enrichments
were observed when using the closest gene instead of our annotated
effector genes for mQTLs (Extended Data Fig. 6b).

Metabolic versus systemic pleiotropy

Pleiotropy is widespread but poorly understood. We developed aframe-
work to characterize four different modes of metabolic pleiotropy
(Fig.3a-d, Extended DataFig. 7, Supplementary Table 6 and Methods).
About half of the pleiotropic mQTLs (n = 880; >2 NMR measures) showed
evidence for two different modes of vertical pleiotropy. First, within
confined pathways (n = 218; ‘pathway pleiotropy’; Fig. 3a) or, second, as
afunction of the correlation withthe ‘lead’ NMR measure (n = 662; ‘pro-
portional pleiotropy’; Fig. 3b). A prototypical example for proportional
pleiotropy was an mQTL tagged by rs624698 for which we prioritized
ANGPTL3asthelikely effector gene (Fig. 3b). Angiopoietin-like 3, encoded
by ANGPTL3, inhibits lipoprotein lipase activity but also endothelial
lipase, resulting in increased triglycerides, HDL cholesterol and

phospholipid concentrations, consistent with HDL-particle character-
istics being the most strongly associated NMR measure (P < 1.0 x 1075),
Other associations reflected downstream effects onlipoprotein metabo-
lismrather than acting onindependent pathways (Fig. 3b), considerably
expanding previous genetic observations*.

The remaining half of pleiotropic mQTLs showed evidence for
two modes of horizontal pleiotropy: those with evidence for ‘dispro-
portional pleiotropy’ (n = 68) and a larger group with evidence for
‘nonspecific pleiotropy’ (n =720). For example, a small deletion on
chromosome1(chr1:92982441:CA>C) was associated with a highly cor-
related cluster of NMR measures, including characteristics of interme-
diate density lipoprotein (IDL), LDL and VLDL particles (Fig. 3c), but for
which we detected no correlation of association strengths according
to the lead NMR measure, the concentration of esterified cholesterol
in medium-sized VLDL particles (P < 6.8 x 10™). We prioritized EVIS as
the most likely effector gene, supported by previous studies on rare
functional variants®. The gene product of EVIS, ecotropic viral integra-
tionsite 5, has noapparentlink to (lipoprotein) metabolism, inline with
most of the gene assignments for mQTLs with a similar nonspecific
pleiotropy pattern. An example of nonspecific pleiotropy was the APOB
missense variant rs676210 (p.Pro2739Leu) associated with 126 NMR
measures across the entire lipoprotein density range, but also creati-
nineand glycoproteinacetyl concentrations (Fig. 3d). The differential
effects of the same genetic variation on distinct lipoprotein subgroups
aligns withchangesinlipid profiles seen withmipomersen, anantisense
oligonucleotide against APOB, that demonstrated reductions in LDL
cholesterol but also subsequent increases in the triglyceride content
of VLDL particles as hepatic adaption occurs®.

Modes of molecular pleiotropy only partially translated into phe-
notypic pleiotropy (Fig. 3e,f). We observed a twofold enrichment of
‘proportional pleiotropic’ (OR 2.11; P< 2.0 x 10 ™) and to a lesser extent
anenrichment of ‘nonspecific pleiotropic’ (OR1.52; P< 1.1 x 10~) variants
among variants reported in the GWAS Catalog for >5 nonmetabolomic
trait categories (Methods). By contrast, the set of pleiotropic GWAS
Catalog variants was significantly depleted for ‘specific’ mQTLs (OR 0.42;
P<1.6 x10™%). Systemic mechanisms explaining effects of ‘proportional’
and ‘nonspecific’ pleiotropic mQTLs were further indicated by a more
than 20-fold significant enrichment of associated trait categories such
as ‘metabolic disease’, fatty liver disease’ and ‘arterial disorders’ (Fig. 3g).

Convergence of common and rare genetic variation shaping
metabolism

We next sought tounderstand convergence of rare and common genetic
findings to systematically identify allelic series thatincrease confidence

Nature Genetics | Volume 57 | October 2025 | 2445-2455

2448


http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs62102718
https://www.ncbi.nlm.nih.gov/snp/?term=rs624698
https://www.ncbi.nlm.nih.gov/snp/?term=rs676210

Article

https://doi.org/10.1038/s41588-025-02355-3

a Pathway pleiotropy: b Proportional pleiotropy: c Disproportional pleiotropy: d Nonspecific pleiotropy:
rs76594121 (ACAD9) rs624698 (ANGPTL3) 1:92982441_CA_C (EVI5) rs1042034 (APOB)
74 50 81
504
6 - . .
o 5] 2 Associated NMRmeasur/e o 401 o 6 o 40 4
S 2 I} 9] I}
] s % 30 3 3
N2 N N N 308
2.8 2 2 e
2340 = 20 = =
3 5 S Y ] o 20
[%2] = (2] (2] (2]
Q21 & Q Q Q
< S < < 24 <
2 10 + 104
14 <
—
04 Correlation with top NMR measure 04 oA 04
. . . . . . . . . . . . . . . .
0o 0.2 0.4 0.6 0.8 1.0 0o 0.2 0.4 0.6 0.8 1.0 ] 0.2 0.4 0.6 0.8 1.0 o 0.2 0.4 0.6 0.8 1.0
Trait correlation squared Trait correlation squared Trait correlation squared Trait correlation squared
e - 2
& ) a . 5 = - a & 3
_ ad g g8 g I 2 8§ a8 8 4y T
1 (] \ | [ L1 W [ | (W) | |
NMR — Unspecific pleiotropy — Pathway pleiotropy
250 4 measures Disproportional pleiotropy == Specific
Proportional pleiotropy
. |
C
3 4
8 |
5 507 | | ‘ | \ l‘\ 4 ‘ L‘\ | 1 I M L“ “‘ | J
k- 01 M“ L i M I iR i ’ﬂ T‘*'ﬁ* 5 l ﬁ r‘# *H’*\Lw\ L 4 —r ’*‘ i t T l( -
I
2 ] ‘
2 100 4
w0
<
250 4 GWAS
Catalog
. . . . . . . . . . . . . . . . T .
1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 16 17 18 19 20 2 23
Chromosomal position
100 | 30 4
T o
- = 251
5 £¢
5 §E 20 I
o o Q
il =% 15
g 50 ) 8
[
| X3 104 .
8 2% s, H Hﬁ H 4 : 4 %
= B3 1 ] Ll " L] " L]
8 ke fa '“*nuﬁ L \*D‘D*nufuﬁn LI um*nuﬁ+ b o Tue dlag Dﬁ*utﬁ* e i* LT m”“&*%‘ “Q@ b °L$DD\
8 o™ 5 TETGT v GBICE] s Ehd B L] Eh|
s E e E PO EE R AL O0CE A0S OEERE 0RO REEEREESE 2002 C 2R
< 3500200000500 20800652053 20605230688062¢63
2 104 EEEEEZEEETE-3ERO0YEERTERITEEQREEDLEETES
O] 00002000 Cc0O 085020085080 ESTELFCOLE050
= 333338333'0‘,3:03“‘)‘*"0 DDS*DEE‘QJDQ::QDS,_ 5658
c soanonosnlal2aEE_OCan~En >3 a0 225 o0 0 >
=] T O OO TORTASOEE S®= 0 ® OS5 ®T O T ®© g cdca ©® O
) chJa)cD04601wwow.aﬂwgou_gmwo()wogomw Q0.2 30 o 0
o EEEEE_QEEEQE;:EN-‘L—;EQEEg-EEE:%EE EESEE EF
£E QU2 o0cESL  BLL <8 SRY o258 e segfa c¢
e $208Cg>S TELE sS80~2E £225 28358 o=
[ R ——— 55 ? 5350 —_ o oI =25 > O S S B 5 2 o O
22 95 J2wm"S T[eED 25 =z N = Q& z 2 [ I
‘ ‘ ‘ ‘ &g 29 %8z 3 b6§¢% 23 ® ] 2o < 2
0 10 50 100 250 Q9 Ao Ow o g5 a 29 o 202 % = g
<3 O oo = S o> E® 5] o og 5
Count NMR measures = 2 o] L o£7 g € 2 oo o © T
O S o =5 d ) i} So cx
< Q¢ > T 3 =
T << ° o
k% ] £
%)

Fig. 3| Modes of pleiotropy. a-d, Representative scatterplots opposing the
squared trait correlation of the lead NMR measure for the listed variant against
the absolute Zscore from linear regression models for all associated NMR
measures. The colors indicate different modes of pleiotropy and correspond to
thelegendine.Foreach plot, alinear regression fit (lines) with 95% confidence
interval (bands) is given. Scatterplots in a-d represent examples of mQTLs
classified as pathway pleiotropy (a), proportional pleiotropy (b), disproportional
pleiotropy (c) and nonspecific pleiotropy (d). e, The number of associated NMR
measures for each 0of 3,007 mQTL groups opposed to associations reported in

the GWAS Catalog after pruning the GWAS Catalog for metabolic phenotypes
(Methods). Coloring is according to modes of pleiotropy. f, A scatterplot
opposing the number of associated NMR measures (x axis) of eachmQTL group
with the number of reported EFO parent categories in the GWAS Catalog. g, ORs
(rectangle) and 95% confidence intervals (Cls; lines) from logistic regression
models testing whether EFO categories (x axis) are more frequently reported for
pleiotropic mQTL groups compared with specific ones. Darker colors indicated
estimates passing corrected statistical significance. n = 3,007 mQTL groups have
been used for enrichment testing.

in causal gene assignment. We identified rare variation (MAF <0.05%)
in 209 genes to be significantly (P <1.1x107®) linked to one or more of
249 NMR measures combining ultrarare gene burden analysis (3,709
significant associations; Supplementary Table 8) and rare exonic vari-
ant analysis (4,131 significant associations; Supplementary Table 9).

Effect sizes were significantly larger compared with more frequent
variant effects (Fig. 4a). For example, participants carrying rare pre-
dicted loss-of-function (LoF) variantsin SLCI3A5had more than1.4 s.d.
units higher plasma citrate concentrations per copy of the possibly
damagingallele (8=1.41;P<2.6 x107%),
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We also observed considerable pleiotropy, including 47 genes
associated with 20 or more NMR measures. Many of these genes
encode for well-known enzymes and transportes, with nearly
half (n=23/51 genes) being involved in (peripheral) cholesterol
metabolism (Extended Data Fig. 8). Some rare pleiotropic variants
with large effect sizes (MAF <0.02% and 8 > 0.6 s.d. units) pointed
toward less-established regulators of metabolism, including
SIDT2 (chr11:117186662:C>T, n =124 associated NMR traits), JAK2
(chr9:5073770:G>T (p.Val617Phe), n = 73 associated NMR traits) or
CEP164 (chr11:117356670:C>G, n =49 associated NMR traits). Experi-
mental work already suggested a role for the gene product of SIDT2
(SID1 transmembrane family member 2) in hepatic lipid metabolism
and apolipoprotein A1 (ApoAl) secretion, the main protein component
of HDL particles, which constituted the majority of associated NMR
measures”?® (Fig. 4b). Variation in JAK2 predisposes to somatic muta-
tionsinducing hematopoiesis of indeterminate potential (CHIP)*’, but
other studies linked the gene productJanus kinase 2 (JAK2) to metabo-
lisminliver®*,adipocytes® or macrophages®. The strong inverse asso-
ciation with parameters of HDL particles thereby best aligned with a
role of JAK2 in promoting the interaction with ATP-binding cassette
transporter Al (ABCAI) and subsequent HDL-mediated lipid removal
from cells, including atherogenic macrophages®. These findings con-
siderably expanded an earlier hypothesis that attributed effects of
the same JAK2 variant on LDL cholesterol primarily to myeloid cells
in a mouse model®. This hypothesis only partially aligns with—and
in some respects contrasts—our human genetic findings across the
lipoprotein-density gradient.

We observed strong overlap between gene burden and common
variant findings, with 85.4% of rare variant (n = 3,528) and 75.5% of gene
burden (n=2,802) associations being <100 kb away from the nearest
statistically independent lead credible set variant (Fig. 4c). By con-
trast, most common variant findings (92.3%) were not within 500 kb of
matchingrare variant/burden evidence. Notably, 12.1% of gene burden
results were more than1 Mb away from the next common credible set
variant for the respective NMR measure, aligning with recent observa-
tions that both approaches prioritize partly different genes*.

At 116 genes (55.5%), rare variant and/or burden evidence over-
lapped with effector gene predictions for close by common cred-
ible set variants (<200 kb) for one or more associated NMR measure
(Fig.4d), providing independent support for allelic series (Fig. 4d and
Supplementary Table 10). For example, we identified an allelic series
composed of seven rare LoF, one gain-of-functionand four common var-
iants for serumcitrate levels at SLC13A5 encoding asodium-dependent
citrate co-transporter. Another allelic series at ANKH comprised four
common variants (rs185448606, MAF 1.3%; rs17250977, MAF 4.0%;
rs826351, MAF 44.3%; rs2921604, MAF 45.9%) and a rare missense
variant chr5:14745916:T>C (MAF 0.0069%) being also associated with
lower serum concentrations of citrate (8 = -2.18 s.d. units, P<5.2 x10™)
(Fig. 4d). ANKH encodes a multipass transporter, recently shown to
transport citrate®, with animportant role in bone health®.

Phenotypic heterogeneity within allelic series

We observed evidence that genetic variants within 17 genes associated
with >10 NMR measures had differential metabolic consequences
withinanallelic series (Supplementary Table 10). The most outstand-
ing example included seven variants (five rare; two common) and
acumulative burden of rare predicted LoF variants at APOAI. They
distinctively associated with one or more of 87 NMR measures, most
strongly with diverse characteristics of HDL particles of which the
gene product, Apolipoprotein Al (ApoAl), is the major component
(Fig. 4e,f). This included four rare missense variants (MAF <0.03%)
encoded in exon 4 that partly differentially associated with the num-
ber, size and cholesterol content of HDL particles (Fig. 4¢€), only one of
which (p.Leul58Pro) primarily associated with serum ApoAl concen-
trations and HDL particle number, mimicking the cumulative burden
of high-confidence predicted LoF variantsin APOAI and suggesting a
potentially dysfunctional protein that lacks interaction with lecithin
cholesterol acyl transferase to facilitate cholesterol uptake®®. By con-
trast, p.Lys131del and p.Arg201Ser seemed to rather predispose to a
shiftin cholesterol content from large towards small HDL particles, a
patternopposed by p.Asp113Glu (Fig. 4e). Consistently, amyloid forma-
tion by ApoAl has been observed in early case reports of p.Lys131del
(ApOA-Lsini’’) in which HDL-cholesterol or ApoAl concentrations
are only mildly changed but aggregation of misfolded ApoAl pro-
tein can confer organ damage later in life*. Because p.Asp113Gluand
p.Arg201Ser have not yet been identified to cause amyloidosis, we
cannot rule out the possibility that each variant maps to distinctive
parts of ApoAl with subsequently different consequences on function
and/or stability (Supplementary Fig. 4). While results for serum ApoAl
concentrations were largely confirmed using an alternative assay, we
observed some discrepancies that may imply that, in the presence of
rare missense variants, the procedure to quantify ApoAl concentra-
tions from'H NMR spectra may need recalibration.

Phenotypic consequences of rare variation in metabolic genes
We observed a>3-fold enrichment of genes previously linked to Mendelian
diseases® (‘OMIM genes’) among those associated with NMR measures
in gene burden and rare exonic variant analyses (OR 3.30,P< 6.5x1077;
Supplementary Table 11), in line with previous mGWAS"*”%, For 15 out
of 106 genes, we found evidence of significantly associated disease risk
(P<7.5x107),largely replicating signs and symptoms of corresponding
rare disorders (Supplementary Note and Supplementary Table 12). When
we tested more generally whether a rare variant burden in metabolic
geneswasassociated with disease susceptibility, we observed asignificant
enrichment among susceptibility genes for endocrine and metabolic
disorders, suchastype2 diabetes and different lipidemias but notamong
other disease categories (Supplementary Fig. 5).

Risk mitigation of atherosclerotic CVD beyond LDL cholesterol
Genetic predisposition to high LDL cholesterol is strongly associated
with increased atherosclerotic CVD (ACVD) risk (‘level effect’), and

Fig.4|Rare coding variation associated with NMR measures and convergence
with common variant associations. a, Effect estimates against MAF of
significantly associated gene burden (diamonds; two-sided P<1.2 x 10 ®and
rare exonic variants (MAF <0.05%; circles; two-sided P < 2.0 x 10™°). b, Effect
estimates and two-sided raw —-log;,(Pvalues) for associations of the rare intronic
variant chr11:117186662:C>T within SIDT2 across all 249 NMR measures. The
dotted horizontal line indicates the multiple testing threshold (P < 2.0 x10™). ¢,
Genomic distance between gene burden (blue) or rare exonic variants (orange)
toward the next common credible set variant. d, Evidence for allelic series based
on (i) gene burden analysis (bottom), (ii) rare exonic variants (middle) and

(iii) common variants with prioritized effector gene matching to the evidence
from exonic analysis. For each gene, only the NMR measure most significantly
associated with the strongest common variant is shown in cases where multiple
NMR measures were associated. Some bars for the number of associated rare

exonic variants have been capped to fit into plotting margin, but the number is
giveninthe plot. e, Effect estimates (dots) and 95% Cls (lines) from our European-
based exWAS for 7 variants mapping to APOA1 as well as a cumulative burden of
high-confidence pLOF variants within APOAI and bespoke circulating measures
of ApoAl (clinical indicates measurements by immunoturbidimetric analysis ona
Beckman Coulter AUS800) and HDL particles (color gradient). f, Top: aheatmap
of standardized effect estimates (per variant) across 87 NMR measures for each
associated variant and a cumulative burden within APOA1. Variants mapping into
theregion encoding the protein are surrounded by a rectangle. Variant effects
have been aligned to the minor allele. Middle: the corresponding variants mapped
to their respective transcripts encoding different forms of APOAI1. Bottom:
missense variants mapped onto the amino acid sequence of the protein. Variant
names colored similarly had highly correlated association profiles.
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Fig. 5| Genetic prioritization to target residual cardiovascularrisk. a,
Summary of two-sample Mendelian randomization analysis testing for
putatively causal effects of NMR measures on the risk on diverse CVD. Shown are
effect estimates for NMR-disease pairs passing multiple testing. Metabolites
are colored according to the scheme from Fig. 1. b, Locus—disease network
highlighting loci for which at least 1NMR measure showed evidence of
colocalization with 1or more CVDs (PP >80%). Only loci without evidence for
unspecific pleiotropy are depicted. Loci were annotated with the most likely
causal gene. Loci colored in blue showed evidence for being associated with LDL
cholesterol whereas red did not. ¢, Dose-response plot for SNPs associated with

Genomic position on chromosome 6

HDL particle size (after filtering for pleiotropic SNPs) against the risk for CAD.
Effect estimates (dots) and 95% Cls (lines) are given and MR-regression lines
added. Effect estimates derived from our European ancestry-based GWAS (x
axis, n=434,646) and Aragam et al.” (y axis, n=1,589,012). d, Effect of rs4711750
across the NMR metabolome. The y axis is a two-sided raw —log,,(Pvalue) derived
from the European ancestry-based GWAS (n = 434,646). e, LocusZoom plot
centered around VEGFA demonstrating colocalization for the genetic signal for
HDL particle size and CAD. The y axis represents the raw —log,,(P value) from the
European ancestry-based GWAS.
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genetic variations that mimic potent drug targets, such as at PCSK9,
show strong evidence of shared effects on both LDL cholesterol and
ACVD (‘locus effect’)*°. To identify potential pathways to mitigate the
residual risk not addressed by lowering of LDL cholesterol*, we sys-
tematically integrated outcome data across 25 CVD phenotypes**
with NMR phenotypes (Supplementary Table 13).

Weidentified significant evidence (false discovery rate (FDR) <5%)
for 1,146 ‘level effects’ across 218 NMR measures with one or more of
22 CVD phenotypes using pleiotropy-curated genetic instruments in
Mendelian randomization (Fig. 5a and Supplementary Table 14). Inde-
pendently, we observed evidence for 5,527 ‘locus effects’, suggesting a
shared geneticarchitecture (posterior probability (PP) >80%) between
87 mQTLsassociated with 247 NMR measures and 17 CVD phenotypes
(Fig.5band Supplementary Table 15). For 46 NMR-CVD combinations,
we found converging evidence for level and locus effects, including
23 not associated in our study with parameters of LDL metabolism
(Fig. 5b), providing potential alternatives for addressing residual car-
diovascular risk (Supplementary Table 16).

For example, we observed robust evidence that, among other
measuresrelated to HDL size and composition, genetic susceptibility
to larger HDL particle size was associated with a 35% reduced risk of
coronary artery disease (CAD; OR 0.65; 95% C1 0.50-0.83; P,4;< 0.007;
Fig.5c) along with evidence of ashared and directionally concordant
genetic signal at the VEGFA locus (rs4711750, PP 99%; Fig. 5e). The
locus has been implicated in CAD risk*’, and our results now sug-
gest that one likely pathway to modulate CAD risk might be via HDL
particle size or characteristics of large HDL particles not captured
by HDL cholesterol. Vascular endothelial growth factor A (VEGFA),
encoded by VEGFA, is primarily known for its role in angiogenesis®
but has been described as a regulatory factor of transendothelial
transport of esterified cholesterol from HDL but not LDL particles
via activation of scavenger receptor Bl (SR-BI) during reverse cho-
lesterol transport*®. Inhibition of VEGFA is a major pharmaceutical
target to suppress vascularization of malignant tumors*, and agents
targeting VEGF signaling are well known for adverse cardiovascular
effects®, suggesting that VEGFA activation, rather than inhibition,
might be necessary toreduce CAD risk. Our observations contribute
toagrowing body of evidence that more tailored approaches, rather
thanincreasing HDL cholesterol content, will probably be needed for
potential cardiovascular benefits, given the discouraging trials for
most agents increasing HDL cholesterol®®. We note, however, that
HDL-particle size might still only be a‘measurable’ surrogate, rather
than being the true underlying mechanism. For example, inhibition
of reverse cholesterol transport via dysfunctional SR-Bl increased
HDL particle size as well as CAD risk®'.

Disease-wide Mendelian randomization screen for
nonlipoprotein measures

Having established pleiotropy categories, we finally aimed to dem-
onstrate its application for nonlipid NMR measures in a disease-wide
Mendelian randomization screen (Supplementary Note and
Supplementary Table17).

We observed converging evidence for a risk-increasing effect
of genetically predicted plasma glycoprotein acetyl concentrations
on type 2 diabetes risk (OR per 1s.d. increase 1.67; P< 3.9 x107) that
persisted after exluding variants with evidence for phenotypic plei-
otropy (OR1.69; P<9.1x107). This is in line with the rare LoF variant
chr20:44413714:C>T (MAF 0.02%) within HNF4A on plasma glycopro-
tein acetyl concentrations (8= 0.60; P< 8.3 x10™) and the cumula-
tive effect of ultrarare LoF HNF4A variants on type 2 diabetes risk (OR
2.68; P=6.5x107'°). However, we note that plasma glycoprotein acetyl
concentrations proxy a complex chronic inflammatory state® that
warrants further follow-up analysis to establish mechanistic links to
type 2 diabetes.

Discussion

The geneticbasis of circulating metabolites providesinsightsinto the
complexity of human metabolic regulation and its subsequent influ-
ence on health and disease. By integrating common and rare genetic
variation with circulating metabolite concentrationsin 450,000 indi-
viduals from three different ancestries, we provide here adata-driven
map of the circulating metabolome across the allele frequency spec-
trum. This map identifies previously unrecognized modulators of
metabolism with potential health implications.

By combining machine-learning-guided common variant-to-gene
annotation with rare exonic variation, we provided high-confidence
effector gene assignments at >100 loci, including some with less estab-
lished roles in (lipoprotein) metabolism, such as SIDT2, presenting
compelling candidates for functional follow-up studies in humans.
Large-scale studies similar to ours, but with a broader coverage of
the plasma metabolome, will probably uncover more genes with yet
undefined roles in metabolism, complementing hypothesis-driven
researchin experimental models.

After more than two decades of GWAS, it has become clear that
pleiotropic effects of genetic variants are ubiquitous (see, for exam-
ple, ref. 63). Little distinction has been possible beyond the generic
concepts of ‘vertical’and ‘horizontal pleiotropy or measures of simple
counting. We refine these concepts by observing variants associated
with dozens of NMR measures but consistent with the concept of effects
diluting or propagating along. Conversely, we observe variants associ-
ated with comparatively few NMR measuresin aninconsistent pattern,
suggesting distinct effects on otherwise highly correlated traits. Our
data-drivenapproach augments previous concepts based on biochemi-
cal pathways reporting directionally discordant pleiotropy to discover
metabolic bottlenecks®*.

Disturbance in metabolism or rearrangements thereof are a hall-
mark of many diseases, including those not classically considered as
‘metabolic’, such as eye disorders?, but whether these are pathways for
prevention or intervention, rather thana consequence of the disease,
often remains elusive in humans. We demonstrated considerable over-
lap between mQTLs with disease risk loci, including rare-to-common
allelic series that can reveal unknown effector genes. However, many
such‘locus effects’ were characterized by nonspecific pleiotropy, impli-
cating the plasma metabolite as a bystander rather than cause of the
disease. This observation aligns with the relatively few notable excep-
tions, suchas HDL particle characteristics and CAD, from two-sample
Mendelian randomization (MR) analyses that contrasted the broad
spectrum of observed disease associations described for the same
NMR platform®. These observations might be best explained by the
concept of metabolic flexibility, which includes built-in redundancyin
key pathways to combat various intrinsic and extrinsic perturbations.

Animportantdistinction of our study compared with most previous
efforts was the availability of highly standardized measurements in a
well-designed single large cohort, mitigating influences of preanalytical
variables and enabling analyses of even ultrarare variants. However, this
also meant that we had little opportunity to investigate the influence
of different states of metabolism on our genetic results (such as an
overnight fast) or investigate robustness of findings in different envi-
ronments or atscalein other ancestries. Forexample, UKB participants
were not asked to fast overnight before their baseline visit, which has
been shown to impact genetic findings®. Other limitations included
the sensitivity and coverage of the 'H NMR platform, and future efforts
are likely to reveal more diverse phenotypic consequences of geneti-
cally constrained flexibility of human metabolism. Another technical
aspect to consider in the interpretation of our results is the indirect
nature of'HNMR derived measurements of certain analytes, including
apolipoproteins, that may no longer be reliable in the presence of rare
damaging variants that change the properties of apolipoproteins as
observed for ApoAl.
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Methods

Study design

The UKBis a prospective cohort study from the UK that contains more
than 500,000 volunteers between 40 and 69 years of age atinclusion.
The study design, sample characteristics and genotype data have
been described elsewhere®®”. The UKB was approved by the National
Research Ethics Service Committee North West Multi-Centre Haydock
and allstudy procedures were performed inaccordance with the World
Medical Association Declaration of Helsinki ethical principles for medi-
calresearch. We included 460,036 individuals across the three major
ancestries in UKB in our analyses for whom inclusion criteria (given
consent to further usage of the data, availability of genetic data and
passed quality control (QC) of genetic data) applied. Data from UKB
were linked to death registries and hospital episode statistics (HES). We
used the ancestry assignments as defined by the pan-UKB®® and further
assigned unclassified individuals to their respective ancestries based
onak-nearest neighbor approach using genetic principal components.
Allanalyses were conducted under UKB applications 44448 and 30418.

Metabolomic measurements

Up to 249 targeted metabolomic measurements were quantified
using the Nightingale NMR platformin human EDTA plasma samples.
Detailed experimental procedures for the NMR platform are described
elsewhere®>®’. The NMR platform covers a wide range of metabolic
biomarkers, including lipoprotein lipids, fatty acids and small mol-
ecules such as amino acids, ketone bodies and glycolysis metabolites,
quantified in molar concentration units. We combine here three data
releases that cover the full breadth of the UKB. Metabolomics data were
available for 482,276 individuals, including 19,699 samples with data
frombaseline and repeat visit.

Metabolites were reliably detected, with only one biomarker
over 2.5% missingness in releases 1/2 (creatinine) and release 3
(3-hydroxybutyrate). Ninety-eight percent of the samples had <5%
missingness over all biomarkers in releases 1/2 and release 3. We used
the ukbnmr’®R package (v2.2, R v4.3.2) for QC and removal of technical
variation in the NMR data. This includes technical confounders such
assample preparationtime, shipping plate well, spectrometer effects,
time drift within spectrometers and outlier plates.

We removed samples that were flagged by Nightingale for poor
quality and used the MICE (Multivariate Imputation by Chained Equa-
tions)” R package to impute the remaining dataset. Intotal, we imputed
0.16% and 0.17% of datain releases 1/2 and release 3, respectively.

We observed overall good consistency with the overlapping rou-
tine blood biomarkers previously measured in the same cohort (median
r=0.9,range 0.62-0.94) (Extended Data Fig. 9).

Adjustment of metabolomic data for medication use

We sought to adjust the NMR data for medication use, especially
cholesterol-lowering medication, to avoid false-positive results driven
by medicationusein downstream genetic analyses. For male and female
participants separately, we fit linear models to quantify the impact of
six drug categories on each NMR phenotype: cholesterol-lowering
medicine, blood pressure medication, diabetic medicationincluding
Metformin usage, oral contraceptive pill or minipill (female only) and
hormonereplacement therapy (female only) (UKB fields 6177 and 6153)
(Supplementary Fig. 6 and Supplementary Table 18).

We used data fromindividuals with both baseline (NMRy,ciine) and
repeat (NMRqq0.,p) assessment metabolic dataavailable and estimated
the effect of medication (med terms) inindividuals that did not take any
drugs at the time of the baseline visit (n = 6,312 male, n = 6,713 female
participants) using the following model:

NMRyasetine ~ NMRgojiow-up + age + BMI

+mEdcholesterol + meddiabetic + medcontraception + medhormone + error.

We note that the sample sizes for diabetic medication (n,,,. = 45,
Neemate = 29), oral contraceptive medication (n=27) and hormone
replacement therapy (n =148) were too small to reliably estimate any
effects. Effect estimates for diabetic medication were correlated to
estimates for cholesterol-lowering medicine. The effect estimates for
blood pressure medication were minimal across the phenotypes. We
considered thus only theimpact of cholesterol-lowering medicine and
corrected the metabolic datain a sex-specific manner.

Genotypingand GWAS analyses

GWAS was performed on 249 metabolic traits measured by the NMR
platform on British European (n = 434,646), British Central/South
Asian (n=8,796) and British African participants (n=6,573) that had
complete phenotypic, covariate and genetic information available.
We used the Haplotype Reference Consortium-imputed genetic data,
including all autosomal chromosomes and the X chromosome. We
performed GWAS under the additive model using REGENIE (v3.2.5)"
that uses a two-step procedure to account for population structure.
We derived a set of high-quality genotyped variants per population
by applying the following filters: (MAF >1%, minor allele count (MAC)
>100, missingness rate <10%, P, > 1x1077°). Furthermore, linkage
disequilibrium pruning was performed using a 1,000-kb window,
shifting by 100 variants and removing variants with LD (r?) >0.8. We
used these variants as input for the first step of REGENIE to generate
individual trait predictions using the leave-one-chromosome-out
scheme. These predictions are used in the second step where individual
variants are tested. Models were adjusted for age, sex and the first ten
genetic principal components. We tested variants with a MAF >0.5%,
amounting to11.5 million variantsin British Europeanindividuals, 11.5
million variants in British Central/South Asian individuals and 19.3
million variants in British African individuals.

Forinitial discovery, we performed a meta-analysis across the three
ancestral groups using METAL”>. We required variants tobe presentin
at least two ancestral groups. To declare significance, we considered
a stringent P-value threshold (2.0 x 107°) by dividing the standard
genome-wide threshold by the number of metabolic phenotypes
(5.0 x1078/249).

We tested our results for genomic inflation and calculated the
single-nucleotide polymorphism (SNP)-based heritability using
LD-score regression” (Supplementary Table 19).

Regional clumping and fine-mapping

We used regional clumping (+500 kb) around sentinel variants from
the analysesincluding British European samples to selectindependent
genomicregions associated withametabolic phenotype and collapsed
neighboringregions using BEDtools (v2.30.0). We treated the extended
MHC region (chré6:25.5-34.0 Mb) as one region.

Within eachregion of interest, excluding the MHC region, we per-
formed statistical fine-mapping for all phenotypes associated with that
region using the ‘Sum of single effects’model (SuSiE) implemented in
the susieR (v0.12.35) R package”. In brief, SuSiE uses a Bayesian frame-
work for variable selection in a multiple regression problem with the
aim to identify sets of independent variants each of which probably
containsthe true causally underlying genetic variant. We implemented
the workflow using default prior and parameter settings, apart from
the minimum absolute correlation, whichwe set to 0.1. Because SuSiE is
implementedinalinear regression framework, we used the GWAS sum-
mary statistics with amatching correlation matrix of dosage genotypes
instead ofindividual-level data toimplement fine-mapping (susie_rss())
asrecommended by the authors”.

To determine the appropriate number of credible sets withineach
region, weiterated over the maximum credible sets parameterin susieR
fromtwo to ten, thus generating fine-mapped results constrained toa
range of maximum number of credible sets. For each collection of cred-
ible sets, we pruned sets where the lead variant was correlated to the
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lead variant of other credible sets (* > 0.25). After pruning, we consid-
ered the fine-mapped results with the largest number of credible sets.

We performed several sensitivity analyses by computing joint
models perlocus-phenotype combination, jointly modeling the effect
ofalldistinctlead credible set variantsin asingle linear model. Subse-
quently, we retained only credible sets where the lead variant reached
genome-wide significance (P=5.0 x10°®) in both marginal and joint
statistics. Furthermore, we ensured the estimated coefficients were
directionally concordant and of similar magnitude between jointand
marginal models (£25%). Linear models were implemented in R using
the glm() function and used only unrelated British European partici-
pants and the same set of covariates as described above.

Finally, we used LD clumping (> > 0.6) to identify credible sets
shared across metabolic phenotypes.

We computed the correlation matrix with LDscore v2.0 using
genetic data from 50,000 randomly selected, unrelated White Euro-
pean UKB participants. In situations where SuSiE did not deliver a
credible set, we used the Wakefield approximation to compute
95%-credible sets.

Replication of genetic associations

Wereplicated our trans-ancestral genetic signals using two independ-
ent studies: (1) the so-far largest published mGWAS? and (2) a par-
allel effort using overlapping UKB data’, both using the same NMR
platform. We considered a set of metabolic traits that were directly
measured by the NMR platform and not inferred from other traits
to avoid multiplicative errors in these more sensitive phenotypes.
In total, we were able to match 144 (Karjalainen et al.’) and 169 (Tam-
bets et al.”’) metabolic traits, for which we compared sentinel variants
that passed metabolome-adjusted, genome-wide significance in our
trans-ancestral meta-analysis and that overlapped between the studies.

Causal gene assignment

Toassign candidate genes for all metabolite QTLs residing outside the
MHC region, we first collected annotations for each genetic variant
or proxies thereof (r* > 0.6), including distance to the gene body and
putative functional consequences based on the Variant Effect Predic-
tor (VEP) tool offered by Ensembl. We further collated up to ten closest
genes withina2-Mbwindow and subsequent gene features such as: (1)
eQTL evidence for a given variant-gene pair for each tissue available
in the eQTL Catalogue release 7”7; (2) evidence of being annotated as
metabolic in the MGl or Orphanet databases as defined in ProGem";
(3) evidence of being listed in the Online Mendelian Inheritance in Man
(OMIM) database™; (4) and evidence of being an already assigned drug
targetin Open Targets’ clinical stages lll and IV.

With no universally accepted standard for variant-to-gene assign-
ments, werelied on prior biological and genomic information to create
three sets of ‘putative true positive’ (PTP) set: genes part of cholesterol
pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG)”’
or REACTOME® database (n = 6,791, 722 unique SNPs), lipid pathway
(n=5,670,603 unique SNPs) and amino acid-related pathway (n = 8,349,
895 unique SNPs). We used all fine-mapped SNPs associated with
metabolites classified in the respective NMR metabolite class (Cho-
lesterol: cholesterol, cholesteryl esters, free cholesterol; Lipid: total
lipids, other lipids, relative lipid concentration, phospholipids; Amino
Acid:aminoacid) inthe PTP setand used overlapping SNPsin only one
PTPset. Wetrained (7:3 training:test ratio without overlapping variants)
arandom forest classifier using fivefold cross-validation with subsam-
pling to account for the unbalanced datasets (scikit-learn v1.4.1). We
used the balanced accuracy score to choose the best-performing forest
from each training set. Subsequently, we used the best-performing
classifier from each PTP set to assign candidate scores for all putative
effector genesacross the entire set of metabolite QTLs. We calculated
the median score across classifiers and selected the highest-scoring
gene per variant. Within each PTP set, we omitted features used to

define true positive sets. Each of the three classifiers exhibited consist-
ent performance (mean ROC-AUC: 0.80, mean balanced accuracy score
0.69) (Supplementary Fig. 7). We used the sum across all three classi-
fiersto assign effector gene scores but present only genes as potential
effector genes that reached sufficient support asindicated by largest
difference between consecutively prioritized genes.

To provide another layer of evidence for assignment of causal
genes at metabolicloci, we performed cis-colocalization with protein
targets measured in the independent Fenland study?. Cis (for exam-
ple,gene body + 500 kb) summary statistics were preprocessed using
MungeSumStats®. To relax the single causal variant assumption, we
used a colocalization approach where we fine-mapped all traits with
SuSiE and then performed colocalization amongall credible sets using
functionality of the coloc (v5.2.3)>® and susieR (v0.12.35)” R packages.
For this, we set the prior probability that aSNP is associated with both
traits to 5 x 10"® and restricted the maximum number of credible sets
for the outcome data to five®.

Tissue enrichment of metabolic loci

We tested whether genes proximal to metaboliclociand assigned effec-
tor genes were enriched in tissue compartments by leveraging data
from the Human Protein Atlas®*. Specifically, we used a two-sided Fish-
er’stest whether metabolic genes were enriched among tissue-specific
genes (tissue-enriched or tissue-enhanced as defined by the Protein
Atlas) against all protein-coding genes as background.

Pleiotropy assignment and overlap with the GWAS Catalog
To assign modes of pleiotropy for each mQTL, we first clumped lead
credible set variants across NMR measures by LD, collating variants
with r?> 0.6 as a single signal, referred to hereafter as mQTL group.
This was done based on dosage files of all unrelated British European
UKB participants and implemented with the igraph (v.2.0.1.1) package
inR.ForeachmQTL, we computed pairwise Pearson correlation coef-
ficients among associated NMR measures. We classified each mQTL
group on: (1) the 25th percentile of all pairwise correlations, and (2) the
Pearson correlation coefficient between the association strengths for
eachmeasure (- log,,(Pvalue)) and its correlation coefficient with the
moststrongly associated measure within the mQTL. The latter is a meas-
ure to what extent the association between NMR measures at a given
locus (‘pleiotropy’) can be explained by being correlated with the most
proximal associated measure. Based on opposing those two measures
for allmQTLs we defined the following five groups: (1) ‘specific’ mQTLs
associated withonly <3 highly correlated NMR measures (rho >0.6); (2)
‘pathway pleiotropic’ mQTLs associated with highly correlated NMR
measures (rho >0.6) that followed the described association pattern
(rho=0.6); (3) ‘proportional pleiotropic’mQTL groups associated with,
inpart, uncorrelated NMR measures but highly correlated association
statistics (rho>0.6); (4) ‘disproportional pleiotropic’ mQTLs associated
with highly correlated NMR measures (rho 20.6), but without evidence
that this translated into a correlation of association statistics (rho
<0.6), and; (5) allremaining mQTLs as ‘unspecific pleiotropic’ groups.
To quantify the extent to which our pleiotropy assignment
extends beyond the NMR measures analyzed here, we intersected
mQTLs and proxies thereof with results reported in the GWAS Catalog
(downloaded 20 May 2024). We first pruned GWAS Catalog entries
for those with mapped traits (to minimize double counting), results
that met genome-wide significance (P <5 x107®) and had location
information available. We further dropped results similar to NMR
measures based on broad Experimental Factor Ontology (EFO) terms
(forexample, EFO:0005105 and child termsindicating ‘lipid or lipopro-
tein measurement’). To further account for traits mapping to similar
categories, we iteratively traced back-mapped EFO terms to broader
parent terms. We finally classified mQTLs to be ‘specific’in the GWAS
Catalogif they associated with fewer than five parent EFO terms and
‘unspecific’ otherwise.
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Integration with cardiovascular endpoints

We next aimed to investigate the shared genetic basis of the 249 NMR
and 25 selected CVD traits. We utilized public databases (GWAS Cata-
log, openGWAS, CVD-KP) to collect CVD data comprising the largest
currently publicly available GWAS datasets on CAD and myocardial
infarction, angina pectoris, aortic aneurysm, heart failure and stroke,
and peripheral arterial disease, including two to five subtypes for some
phenotypes (Supplementary Table 13). Data were harmonized and, if nec-
essary, lifted over to GRCh37 using the MungeSumstats (v1.13.2) R pack-
age®. We queried mQTL lead variants and proxiesinstrong LD (©*> 0.8;
LD backbone based on UKB, as described above) of each NMR trait in
eachregion and corresponding summary statistics for each CVD trait.

Toinvestigate ‘locus’ effects, we performed statistical colocaliza-
tion for all combinations of the NMR traits-CVD traits as described
before (see ‘Causal gene assignment’ section).

To estimate ‘level’ effects of NMR metabolite concentrations on
CVD outcomes, we performed Mendelian Randomization analysis using
the TwoSampleMR package (v0.5.1),implementing the inverse-variance
weighted and the MR-Egger methods. We used all 249 NMR metabolites
asexposure variables, the 25CVDs as outcome variables and assessed
separately four sets of instruments: (1) sentinel variants, (2) lead cred-
ibleset variants, (3) lead credible set variants restricted for molecular
pleiotropy (for example, ‘pathway pleiotropy’) and (4) lead credible set
variants restricted for both molecular and phenotypic pleiotropy. We
used the Wald ratio method to estimate the effect of NMR concentra-
tions on CVD outcomes using only single genetic variants®. We used
MR-Egger to test for evidence of a pleiotropic association, anintercept
Pvalue >0.0001 indicating evidence of no pleiotropy and checked
for concordance between the effect estimates of inverse-variance
weighted Mendelian randomisation (IVW-MR), MR-Egger and single
genetic variant MR. We controlled the FDR at 5% (ref. 86). To further
limit the possible extent of pleiotropic associations, we only reported
‘level effects’ passing these filters in the variant sets 2-4, prioritizing
the association in the more stringent variant set.

The overlap of ‘locus effects’ showing no ‘disproportional pleiot-
ropy’ accordingto the section ‘Pleiotropy assignment and overlap with
the GWAS Catalog’ as well as a significant single variant MR (FDR 5%)
and ‘level effects’ calculated from metabolite-specific or metabolite-
and phenome-specific variants was used to identify gene-metabolite
pairs associated with CVD risk independent of LDL metabolism. We
considered loci as independent from LDL metabolismif they did not
associate with clinical LDL cholesterol at the locus with P<2.0 x 10
and the effect estimate of any variant on clinical LDL-C ranked upward
the 80th percentile of all effect estimates at the locus.

Whole exome sequencing data QC for rare variant analyses
Anin-depth description of whole exome sequencing, including experi-
mental details, variant calling and standard QC measures for the UKB
hasbeen extensively reported by Backman et al.¥”. We performed addi-
tional QC steps at the UKB Research Analysis Platform (RAP; https://
ukbiobank.dnanexus.com/).

We used bcftools (v1.15.1) to process population-level Variant
Call Format (pVCF) files. Initially, we normalized the data using the
reference sequence GRCh38 build, followed by splitting multiallelic
variants. Subsequently, we conducted QC on these variants using a set
of parameters outlined below to filter high-quality variants for down-
stream genetic analyses. Genotypes for SNPs were set to missing if the
read depthwaslessthan7 (orless than10 for INDELs) or if the genotype
quality was below 20. Furthermore, we excluded variants if the allele
balance waslessthan 0.25 or greater than 0.8 in heterozygous carriers.
Finally, we excluded variants with missingness >50%.

Variant annotation and gene burden masks
Variants were annotated using ENSEMBL VEP® (v106.1) with the most
severe consequence for each variant chosen across all protein-coding

transcripts. We further utilized additional plugins REVEL*, CADD v1.6”°
and LOFTEE” for variant annotation. Based on these scores, we defined
six partially overlapping variant masks: (1) high-confidence predicted
LoF (pLOF, based on LOFTEE and includes stop-gained, splice site dis-
rupting, and frameshift variants); (2) any pLOF assigned high impact
by VEP; (3) pLOF and high-impact missense variants (CADD score >20
or REVEL score >0.5); (4) pLOF and any missense variants; (5) only
high-impact variants; and (6) any missense variants but not pLOF. We
tested synonymous variants separately as anegative control. We tested
eachmaskin different MAF bins, using 0.5% and 0.005% as thresholds.

We performed rare variant association testing (RVAT) using whole
exome sequencing (WES) data across 249 NMR phenotypes using REG-
ENIE (v3.1.1) via the DNAnexus Swiss Army Knife tool (v4.9.1). Similar
tocommon variant GWASs, we used a two-step approach by REGENIE.
We additionally generated step 1leave-one-chromosome-out (LOCO)
files with and without adjusting for common signals via a polygenic
score (PGS derived from all lead credible set variant per NMR trait) in
the RVAT models per phenotype. Al RVAT models were then adjusted
for PGSinadditionto age, biological sex, fasting duration and the first
ten genetic PCs. We first performed aggregated gene burden testing
across for 19,026 genes using a set of masks as defined above. For
geneburdentesting, we used the aggregated Cauchy association test
to estimate P values for each gene across masks and allele frequency
bins. The aggregated Cauchy association test first computes Pvalues
for all sets defined by various masks withinagene and then takes these
Pvalues as input to compute one Pvalue for the respective gene via a
well-approximated Cauchy distribution.

We performed single variant association testing for exonic vari-
ants (ExXWAS). For the ExXWAS, we tested variants with MAC >5 and
reported results for variants with MAF <0.0005. We have performed
these analyses in individuals of British European, British African and
British Central/South Asian ancestry.

We considered findings as robust if they passed
multiple-testing-corrected statistical significance (gene burden:
P<1.2x1078 (corrected for the number of genes x number of traits);
EXWAS: P< 2.0 x 107° (same as for common variant GWAS, conventional
genome-wide significance corrected for the number of traits)) inboth
the model with and without adjusting for the common variant PGS and
effect sizes did not differ by more than 20% between these models, as
this might otherwise indicate that rare variant findings cannot clearly
be distinguished from common variant effects.

Phenotype definition

To systematically test for phenotypic consequences of genes identified
through rare variant analysis, we collated 626 disease entities following
previous work' by aggregating information fromself-report, HES, death
certificates and primary care data (45% of the UKB population). Each
disease entity had at least one significant common variant, and we used
asimilar analysis workflow using REGENIE as described for NMR meas-
ures but using logistic regression with saddle point approximation.

Integration of OMIM

We downloaded the OMIM gene-disease list (9 November 2023) and
kept 7,327 unique entries after filtering for gene entries with high confi-
dence (level 3). We computed the enrichment of genes associated with
any NMR measure from rare variant or gene burden analysis against a
background of 19,989 protein coding genes using Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Allindividual-level data are publicly available tobonafide researchers
viathe UKB at https://www.ukbiobank.ac.uk/. Fullsummary statistics
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for all analyses are publicly available through the NHGRI-EBI GWAS
Catalogue (GWAS Catalogidentifiers GCST90497044-GCST90501341;
see GitHub repository).

Code availability

Code for the main analyses is freely available via GitHub at https://
github.com/comp-med/ukb-mgwas and permanently archived via
Zenodo at https://doi.org/10.5281/zenodo0.14716599 (ref. 92).
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Extended Data Fig. 1| Graphical outline of the study design. EUR, European ancestry; CSA, Central/South Asian ancestry; AFR, African ancestry.
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