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In Brief
In the present article, we review
and critically assess existing
methods for reconstructing
protein networks and discuss
when each method is preferred
for applications in cardiovascular
research. We demonstrate the
necessity to reconstruct
networks separately for each
cardiovascular tissue type and
disease entity and provide
illustrative examples of the
importance of taking into
consideration relevant post-
translational modifications.
Finally, we demonstrate and
discuss how the findings of
protein networks could be
interpreted using single-cell
RNA-sequencing data.
Highlights
• Co-expression and PPI networks are widely used in cardiovascular research.• Directed regulatory networks are more suitable for generating causality hypotheses.• Tissue, cell, and disease status triggers rewiring of protein networks.• Considering post-translational modifications can refine the reconstructed networks.• Integrating protein networks with other omics data enables scientific deductions.
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Biological networks have been widely used in many
different diseases to identify potential biomarkers and
design drug targets. In the present review, we describe
the main computational techniques for reconstructing and
analyzing different types of protein networks and sum-
marize the previous applications of such techniques in
cardiovascular diseases. Existing tools are critically
compared, discussing when each method is preferred
such as the use of co-expression networks for functional
annotation of protein clusters and the use of directed
networks for inferring regulatory associations. Finally, we
are presenting examples of reconstructing protein net-
works of different types (regulatory, co-expression, and
protein-protein interaction networks). We demonstrate the
necessity to reconstruct networks separately for each
cardiovascular tissue type and disease entity and provide
illustrative examples of the importance of taking into
consideration relevant post-translational modifications.
Finally, we demonstrate and discuss how the findings of
protein networks could be interpreted using single-cell
RNA-sequencing data.

Biological networks have been widely used in many different
diseases to identify potential biomarkers, causal genes, and
drug targets (1). Genetic interaction networks (2, 3) have been
widely used to map genetic mutations with phenotypic
changes, but the focus of the present article is on protein
network reconstruction from quantitative data. The basic types
of protein networks are the experimentally or in silico recon-
structed protein–protein interaction (PPI) networks and the
functional networks, which could show similar protein co-
regulation, expression, or function. The latter can be split into
regulatory and co-expression networks, according to whether
their edges are directed or not. Networks can reveal useful
biological andmolecular information by inspecting twodifferent
and complementary types of network properties, the topologi-
cal and the functional ones (4). Topological characteristics are
used to represent the structural features of the network and are
associated with biological properties and certain parameters,
such as the betweenness centrality, which is used to reveal
critical nodes. The functional approach clusters the nodes
based on their functional information, such as cell
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compartments and molecular functions (5). Recently, a
systems-level approach, which involves focusing on a group of
genes or proteins rather than on individual molecules, is being
used to find mechanisms of complex diseases, which involve
groups of genes or proteins (6). Several reviews are describing
the different types of biological networks and analysis. Hu et al.
(7) outlined different computational methods for identifying PPI
networks. Vella et al. (8) described PPI and co-expression
network reconstruction and analysis methods as well as
studies involving the use of proteomics co-expression net-
works. Liu et al. (9) described different ways to identify critical
nodes, and Meng et al. (10) described the different topological
properties of PPI networks. Furthermore, previous reviews
(11–15) have described the application of network analysis in
diseases as well as systems biology approaches which include
proteomics integrationwith other -omics technologies, network
analysis, and their application in cardiovascular diseases (16,
17). To the best of our knowledge, however, none of them has
focused on the different network types, the technical aspects of
the network reconstruction methods, nor have they studied the
effect of post-translational modifications and cell and tissue
composition in the reconstructed networks. In this review, we
discuss the role and types of protein networks, the different
network analysis techniques, and tools, and focus on their
application to tissue proteomics of clinical samples.

EXISTING METHODS FOR PROTEIN NETWORKS RECONSTRUCTION
AND ANALYSIS

The basic steps of network analysis involve the recon-
struction of PPI networks of undirected protein co-expression
networks, and of directed protein regulatory networks, their
clustering to identify significant modules, and their analysis
and visualization to reveal key hub proteins that can serve as
diagnostic, prognostic, or therapeutic biomarkers. PPI net-
works are static networks since they do not change, have the
same connections between the nodes in all conditions, do not
take into account the data of each experiment or different
tissue or disease definition, and form a static integrated pic-
ture of protein activity. Table 1 presents the basic categories
for protein network reconstruction and analysis, some
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@kcl.ac.uk.

Mol Cell Proteomics (2023) 22(8) 100607 1
chemistry and Molecular Biology.
nses/by/4.0/). https://doi.org/10.1016/j.mcpro.2023.100607

Delta:1_surname
Delta:1_given name
https://orcid.org/0000-0002-0597-829X
Delta:1_surname
https://orcid.org/0000-0001-6799-0553
mailto:konstantinos.theofilatos@kcl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcpro.2023.100607&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mcpro.2023.100607


TABLE 1
Existing methods for the reconstruction and analysis of proteomic networks, indicative tools, and their implementations

Analysis type Subcategory
Indicative
methods

Advantages Disadvantages Implementation Input data

Protein-Protein
Interaction
Network
Reconstruction

Computationally
and
experimentally
verified

STRING (21),
Metascape
(22)

i) Interactions for many
species

ii) Interactions from many
sources

iii) User-friendly network
visualization and analysis

High false positive rate
Not full coverage of
interactomes

Webtool/
Standalone (R,
Bioconductor
Package)

Single or multiple gene list

Protein co-
expression
networks

Correlation-
based

WGCNA (24) i) Sparse Networks
ii) Optimized Threshold

i) One threshold for all
nodes

ii) Linear Associations Only
iii) Undirected Networks

Standalone (R/
Python)

i) Gene expression dataset
ii) External trait data (eg

clinical) to relate modules
with

Mutual
Information
Based

MIDER (25) Distinguishes between direct
and indirect links

Undirected Networks Standalone
(Matlab)

Time-series data

Probabilistic SEC (28) Creates sparse matrices The threshold needs to be
decided with trial and error

Undirected Networks

Standalone
(Matlab)

Gene expression data

Protein
Regulatory
Networks

Mutual
Information
Based

ARACNe-AP
(29)

i) Sparse Networks
ii) Directed Networks
iii) Non-linear associations
iv) Removes indirect links

i) Cannot discriminate
between

ii) positive and negative
associations

iii) Requires a given set of
transcription factors

Standalone
(JAVA)

Gene expression data and tf/
gene list

Probabilistic BNW (27) i) Handles noise and
uncertainty

ii) Directed Networks

i) Does not support large
networks

ii) Feedback loops are not
allowed

iii) Static networks of ≤19
variables

Webtool i) Hybrid datasets contain
both continuous (eg gene
expression data) and
discrete (eg genotypes)
variables

ii) Can include prior
knowledge

Machine-
learning based

dynGENIE3
(33)

i) Directed Networks
ii) Good scalability

Semi-parametric Standalone
(Python/
Matlab/R)

i) Steady -state and time
series expression data

ii) Can include prior knowl-
edge (eg known TFs)

Network
Clustering

Hard-clustering HipMCL (88) i) Fast Clustering in Large
Networks

ii) Supports edge-weighted
graphs clustering

i) Does not allow unclus-
tered nodes

ii) Does not allow over-
lapping clusters

Standalone
(C++)

Not Applicable

Soft-clustering ClusterOne
(39)

i) Allows overlapping
clusters

ii) Allows for unclustered
nodes

iii) Does not allow small
clusters

Lower Interpretability Standalone
(JAVA)/
Cytoscape
plug-in

Not Applicable

STRING is included in the computational methods of PPI network reconstruction as it uses an in-silico probabilistic method for PPI predictions.
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Networks in Cardiovascular Proteomics
indicative tools, and their advantages and disadvantages.
PPIs can be divided into physical (direct) interactions and in-
direct interactions and both types of networks can be either
reconstructed with experimental methods or predicted using
in silico machine learning, mathematical modeling, or other
methods (4, 12). There are many databases, where experi-
mentally verified PPI networks can be retrieved, such as iRe-
fIndex (18), combining information from primary databases,
such as IntAct (19) and BioGRID (20). PPIs can also be
computationally predicted (STRING (21) and Metascape (22)).
Such databases have been extensively used for the recon-
struction of PPI networks in several diseases (10, 23).
The existing methods for co-expression network recon-

struction were grouped into four basic categories: correlation-
based, information theory-based, mathematical modeling, and
other methods. Weighted gene correlation network analysis
(WGCNA) (24) is one of the most widely used correlation-
based approaches to construct co-expression networks.
WGCNA provides tools to construct networks, identify mod-
ules, determine topological attributes, simulate, and visualize
data. Correlation-based methods cannot model nonlinear
associations. Thus, mutual information-based techniques,
such as MIDER (25), have been introduced to address this
issue. The problem of reconstructing co-expression networks
is a mathematical optimization problem and this is the reason
why mathematical and probabilistic modeling techniques,
such as the Bayesian ones (26, 27) and the Sparse Estimation
of the Correlation matrix (SEC) (28) have been widely used.
However, these techniques suffer from a high number of as-
sumptions and are not applicable to large-scale networks.
Protein regulatory networks are networks incorporating

directionality and interaction type for each interaction. The
existing methods for regulatory network reconstruction were
grouped into three basic categories: information theory-
based, mathematical modeling, and machine learning–based
methods. One of the most widespread methods from this
category is the Algorithm for the Reconstruction of Accurate
Cellular Networks using adaptive partitioning strategy (ARA-
CNe-AP) (29), which uses an information theoretic context
based on the Data Processing Inequality (DPI) theorem to infer
direct regulatory relations among transcriptional regulator
proteins and target genes. ARACNe-AP estimates the mutual
information threshold, uses bootstraps to reconstruct net-
works, and finally constructs a consensus network. Artificial
Neural Networks (ANNs) can recognize any input pattern
entered and create models of the data structure and con-
nections that occurred during the procedure. Recurrent neural
networks are widely presented as the most effective neural
network-based models for gene regulatory network con-
struction because of their ability to represent and model
feedback and memory mechanisms (30). Rubiolo et al. (31)
have used the Extreme Learning Machine (ELM)–supervised
neural model to reconstruct regulatory networks from time
series. Machine learning models have also been suggested to
reconstruct protein regulatory networks. Such an example is
GEne Network Inference with Ensemble of trees (GENIE3) (32),
an unsupervised method for network inference based on
regression trees. This method is scalable, suitable for non-
linear data, and efficient in the case of many features. How-
ever, it only takes steady-state data as input. Thus, Huynh-Tu
and Geurts (33) proposed an adaptation, the dynamic GENIE3
(dynGENIE3), which can combine both steady-state and time
series data as an input. Keyl et al. (34) used a hybrid method
that combines neural networks and a machine learning tech-
nique, layer-wise relevance propagation (LRP), to predict
patient-level proteomic networks. Their method first uses
neural networks to predict protein abundances and after
training the network, it uses LRP to identify the input variables
of the neural network that contributed the most to the pre-
diction of the output.
Clustering is the first step after constructing and visualizing

the network (with the most popular and widely used tool for
visualization being Cytoscape (35)). Network clustering is
used to group proteins with similar expression patterns and
results into groups of nodes that often correspond to
different functional groups. Clustering methods can be
separated into three categories: (1) Hard clustering tech-
niques, such as Markov Clustering (MCL) (36), and Restricted
Neighborhood Search Clustering Algorithm (RNSC) (37),
where all proteins are clustered and each protein can only
belong to one cluster; (2) Soft clustering techniques, such as
Molecular Complex Detection (MCODE) (38), ClusterONE (39)
and WRNSC (40), where clusters can overlap and some
proteins could remain unclustered; (3) Clustering techniques
that are based on modularity density metric to detect com-
munities, such as Louvain Clustering (41, 42). The Louvain
clustering algorithm has found widespread use in various
forms and has been applied to numerous biological net-
works. However, modularity-based algorithms like Louvain
have a limitation in that they tend to exclude communities
below a certain size threshold, known as the resolution limit.
To overcome this limitation, a recent publication (43) used a
recursive hierarchical approach in combination with the
Louvain community detection algorithm to enable the reso-
lution of hierarchically nested structures. Hierarchical clus-
tering methods belong to the hard clustering techniques but
are also able to provide a hierarchical organization among the
proteins of a protein network (44). When all these network
clustering methods are applied to physical PPI networks, the
predicted clusters correspond to protein complexes (7).
However, recently, these techniques for protein complex
prediction were complemented with methods taking into
consideration computationally predicted protein structure
(45) or being applied directly to raw mass spectrometry data
(46). Furthermore, another group of methods has been
introduced to hierarchically organize networks (47) and to
hierarchically organize tissues based on their underlying
proteomic networks (48).
Mol Cell Proteomics (2023) 22(8) 100607 3



Networks in Cardiovascular Proteomics
Another important analysis step involves the identification of
essential nodes, also called hubs. Hub nodes are central
nodes to the network and could be separated into intra- and
intermodular hubs. Intra-modular hubs are central to each
network cluster they belong to, whereas inter-modular hubs
are central to the whole network (13). The most widely used
methods for identifying hubs in a network are based on to-
pological centralities such as the betweenness, degree, Pag-
eRank, and clustering coefficient with many tools, including
Cytoscape (35), Network Analysis Tools (NeAT) (49) and Net-
Confer (50) enabling such analysis.

NETWORK APPROACHES FOR TISSUE AND DISEASE-SPECIFIC
NETWORKS

The PPI databases can provide only a static form of the
proteome interactome and not the cell- and tissue-specific
context-dependent proteome connectivity (51). Cell-specific
interaction networks can reveal characteristic biological
properties and unique interactions of each cell, which are
often related to distinct phenotypes (52). It has been observed
among different cell-specific networks that, even when their
interactomes share most of the proteins, the interactions
among them differ. These interactome differences reveal cell-
specific processes and are a result of distinct mechanisms,
such as differential protein abundance, protein localization, or
post-translational modifications (52–54). This cellular diversity
leads to tissue-scale protein interactions. Attempts to report
tissue-specific protein interactomes include TissueNet (55) a
web tool that contains tissue-specific PPIs for human proteins
and displays the expression of a query protein and all its
interaction partners in the different tissues available. In the
context of disease, Basha et al. (56) used MyProteinNet (57) to
show tissue selectivity for gene expression and interactomes,
exploring various tissues and including heart tissue. Greene
et al. (53) used a kidney-specific network reconstructed with
the NetWAS tool to train a classifier that can identify tissue-
specific connectivity patterns associated with hypertension.
Figure 1 demonstrates a visual example of reconstructing

the basic types of networks presented in Table 1 (PPI, protein
co-expression, and protein regulatory networks). We have
chosen a proteomics dataset for the matrisome of the left
anterior descending coronary human arteries, using the most
widely used method from each category. The matrisome was
defined as the ensemble of Extracellular Matrix (ECM) and
ECM-associated proteins. The ECM is a three-dimensional
structure present in all tissues but different for each organ. It
is composed of proteins such as proteoglycans, collagens,
and glycoproteins (58). ECM remodeling in atherosclerosis
plays an important role in plaque destabilization and pro-
gression (59). Bayesian methods and other mathematical
modeling methods were not used since the examined tools
(Table 1) were not supporting datasets of this sample and
protein markers size. Limited overlap was found between the
static PPI network and the reconstructed networks, as the
4 Mol Cell Proteomics (2023) 22(8) 100607
percentages of confirmed interactions of the PPI network
against both the protein co-expression (8.47%) and the pro-
tein regulatory (9.11%) network was less than 10%. PPI net-
works, even the ones based on experimental evidence, are
being created based on evidence from different types of tis-
sues and conditions, and it is highly likely that most of them
are not relevant to a particular tissue. As shown in Figure 1,
significant hub proteins (betweenness centrality over 0.05) in
the PPI network, such as Fibronectin 1 (FN1), were not
returned as significant in the other networks. Protein co-
expression and protein regulatory networks presented higher
overlap, with more than 30% of the interactions of one
network confirmed in the other (31.99% and 32.42%
respectively). Moreover, significant overlap was observed in
the hub proteins, with the membrane-associated proteins
Vinculin (VCL) and LRP1 (LDL Receptor Related Protein 1)
being hubs (betweenness centrality over 0.05) for both protein
co-expression and regulatory networks. Further experimental
validation should be performed to verify interactions and sig-
nificant proteins experimentally by performing pull-down
assay experiments with the revealed hub proteins and their
candidate interaction partners. Moreover, instead of just
exploring the static PPI networks, this analysis should be
complemented with reconstruction and analysis of co-
expression and regulatory networks in the specific tissues of
interest to probe real interactions and disease mechanisms.
To illustrate the tissue and disease specificity of the

reconstructed networks, we reconstructed two networks of
the extracellular matrisome using label-free proteomics data
from samples of previously published studies on ischemic
heart failure (60) (Fig. 2) and atherosclerotic carotid plaques
(61) (Fig. 3). For the reconstruction of these networks, we used
only extracellular proteins that were consistently quantified in
both datasets (<30% missing values per protein). Both net-
works were reconstructed using the ARACNe-AP information
theory-based method with default parameters for network
reconstruction (100 bootstraps for creating the network and
Bonferroni correction of the nominal p-values of each inferred
edge). With the network reconstruction, we were able to
confirm known interactions in the heart tissue network such as
the ones between collagens (COL6A1, COL6A2, COL6A3) and
the ones between laminins (LAMA5, LAMB2, LAMC1). We
performed network analysis for the two networks, using the
NetworkAnalyzer (62) Cytoscape plug-in. The power law dis-
tribution was fitted to both networks’ degree distribution,
verifying the scale-free topology of the networks. The net-
works for plaque and heart tissue had comparable clustering
coefficients of 0.24 and 0.27 respectively, suggesting a similar
topology for both networks. However, the two disease- and
tissue-specific networks differed in several other properties.
For example, the heart tissue network has higher connectivity
and a smaller number of sub-networks than the carotid plaque
network, with 11 connected components and a radius of 5,
compared to 23 connected components and a radius of 1.



FIG. 1. Different networks to capture different aspects of the matrisome network of atherosclerotic plaques. Example of different types
of networks for the matrisome of human left anterior descending coronary artery. Data-independent acquisition mass spectrometry data of 99
samples were used from the Parker et al. study (80) and filtered to keep only matrisome-related proteins, according to a custom matrisome
database composed of extracellular proteins from the MatrisomeDB (81), apolipoproteins, and other secreted proteins that are consistently
quantified (less than 20% missing values). The experimentally verified protein-protein interaction network was created by mining matrisome
interactions from the STRING web tool (21). The protein co-expression network was reconstructed using the WGCNA pipeline (24), with
Pearson’s correlation as the interaction metric and 0.5 with a soft power of 10 as a threshold to infer interactions. ARACNe-AP (29) with default
parameters was used to reconstruct the protein regulatory network with the same data. All networks were visualized using Cytoscape (35),
proteins were colored based on the matrisome group they belong to, and node size was set to be proportional to the betweenness centrality of
the node in the network. Only the nodes with betweenness centrality above 0.05 were labeled. The confirmed interactions of a network against
another type of network are depicted with arrows connecting the different networks, and the average percentages (%) of common interactions
between the two types of networks are also depicted. AEBP1, Adipocyte enhancer-binding protein one; APOC1, Apolipoprotein C-I; F13A1,
Coagulation factor XIII A chain; FN1, Fibronectin; GSN, Gelsolin; HTRA1, Serine protease HTRA1; ITGB1, Integrin beta-1; LRP1, Prolow-density
lipoprotein receptor-related protein one; LTBP1, Latent-transforming growth factor beta-binding protein one; SERPINF2: Alpha-2-antiplasmin;
THBS1, Thrombospondin-1; VCL, Vinculin.

Networks in Cardiovascular Proteomics
These differences suggest that the two networks have distinct
structures and may be governed by different underlying bio-
logical processes, in particular, higher connectivity among the
matricellular proteins in the ischemic heart tissue network
compared to carotid plaques. In contrast, serum proteins and
proteases are more central in the carotid plaque network since
carotid endarterectomy lesions are expected to contain more
serum-derived proteins than myocardial tissue. Clustering
analysis (using the clusterONE Cytoscape plug-in, a minimum
number of five proteins per cluster, and the MI) also verified
this, with certain matricellular proteins forming a unique
cluster for the cardiac tissue network that was not present in
the carotid plaque network.
The most significant difference is observed in the top hub

proteins using the degree centrality of each network.
Complement Factor H (CHF), Fibronectin (FN1), and Target of
Nesh-SH3 (ABI3BP) are the top three interconnected proteins
of the heart tissue network (with their degree centrality being
40, 23, and 22 respectively). Publicly available single-cell
RNA-sequencing data from heart tissue samples (Fig. 4A,
ExpressHeart web portal) showed that these matricellular and
structural ECM proteins are mostly expressed in fibroblast and
myofibroblast cells in the heart. It is noteworthy that car-
diomyocytes were not included in this analysis, as the
ExpressHeart web portal is only based on scRNAseq and
does not include single nuclei data, thus cardiomyocytes are
too big to detect with this technique. On the contrary, these
proteins lost their central role in the carotid plaque network
and stopped being hubs (Fig. 3), having a very smaller degree
centrality, belonging to different subnetworks and are
Mol Cell Proteomics (2023) 22(8) 100607 5



FIG. 2. Heart tissue matrisome network. Label-free discovery mass spectrometry data of 65 ischemic heart tissue samples were used from
the study by Barallobre-Barreiro et al. (60) and filtered to keep only matrisome-related proteins, according to a custom matrisome database
composed of extracellular proteins from the MatrisomeDB (81), apolipoproteins, and other secreted proteins that are consistently quantified (less
than 30% missing values). ARACNe-AP (29) with default parameters was used to reconstruct the regulatory network, filtering out negative
associations using the SIREN algorithm (82). Networks were visualized using Cytoscape (35), matrisome proteins were colored based on the
functional category they belong to, edge width was set to be proportional to mutual information metric, node size was set to be proportional to
its degree centrality and hub proteins are highlighted in blue.

Networks in Cardiovascular Proteomics
expressed in both smooth muscle and endothelial cells
(Fig. 4B). Immunoglobulins (Immunoglobulin Kappa Constant:
IGKC, Immunoglobulin Heavy Constant Alpha 1: IGHA1) and
serpin family A member 1 (SERPINA1) were the top three hub
proteins in plaques (with a degree of 11 for immunoglobulins
and 10 for SERPINA1 respectively) and were highly expressed
in plasma cells and monocytes/macrophages, respectively
(Fig. 4B). Moreover, proteins with similar functionality were
more closely connected in the heart tissue network than the
carotid plaques one. One such example is the matricellular
proteins and especially the proteoglycans (DPT, PRELP, LUM,
DCN, OGN, ASPN), which form a highly connected network
component in the heart tissue network (Fig. 2), whereas pla-
ques showed less interconnectivity and belonged to different
subnetworks. In opposite to their cellular expression in the
heart tissue (myofibroblasts and fibroblasts), in plaques these
proteins were not only expressed in fibroblasts but also in
endothelial and smooth muscle cells (Fig. 4B), reflecting the
6 Mol Cell Proteomics (2023) 22(8) 100607
higher cell heterogeneity of carotid plaques. Thus, the com-
bination of network analysis and single-cell RNA-sequencing
data verified that the known cell composition differences be-
tween the two tissues and diseases are reflected in the
reconstructed networks and identified different hub proteins
for each matrisome network.

INTEGRATION OF PTMs IN NETWORK RECONSTRUCTION

Post-translational modifications (PTMs) are playing an
important role in the structure and function of proteins and
should be taken into consideration when reconstructing bio-
logical networks using proteomics data. Some tools already
take PTMs in network reconstruction into consideration, such
as the iPTMnet (63).
To assess the influence of PTMs, we reconstructed a pro-

tein regulatory network for atherosclerotic plaques based on
the same dataset from Figure 3 but considering oxidized and
unoxidized forms of each protein as separate nodes. To



FIG. 3. Carotid plaque matrisome network. Label-free discovery mass spectrometry data of 12 carotid endarterectomy samples were used
from the study by Langley et al. (61) and filtered to keep only matrisome-related proteins, according to a custom matrisome database composed
of extracellular proteins from the MatrisomeDB (81), apolipoproteins, and other secreted proteins that are consistently quantified (less than 30%
missing values). ARACNe-AP (29) with default parameters was used to reconstruct the regulatory network, filtering out negative associations
using the SIREN algorithm (82). Networks were visualized using Cytoscape (35), matrisome proteins were colored based on the functional
category they belong to, edge width was set to be proportional to mutual information metric and node size was set to be proportional to its
degree centrality.

Networks in Cardiovascular Proteomics
explore the effect of oxidation on the interactions and corre-
lation patterns of the proteins in human atherosclerotic pla-
ques, we exported the atherosclerotic dataset at the peptide
level, choosing the oxidation of methionine, proline, and lysine
residues as a dynamic modification. We used the consistently
detected peptides (<30% missing values) to quantify the un-
modified (at least two peptides per protein) and oxidized
proteins. The WGCNA method (24) was used for network
reconstruction. Filamin A (FLNA) was among the proteins
which presented the biggest differentiation in its degree cen-
trality when compared with its oxidized and unmodified form
(54 and 34-degree centrality, respectively). Filamin A is a
cellular protein that crosslinks actin filaments and links them
to membrane glycoproteins and is involved in the remodeling
of the cytoskeleton, to effect changes in cell shape and cell
migration. Filamin A is also secreted, and it was consistently
quantified in the extracellular extracts of the carotid plaque
dataset (64). Seven FLNA peptides were found to be oxidized,
with four of them being oxidized in methionine and three of
them in proline amino acids. Accurate quantification of
methionine oxidation in a proteomics scale has technical
limitations as methionine could be readily oxidized during
sample preparation (65). However, the sum of the abundances
of methionine oxidized peptides was highly correlated with the
sum of proline oxidized peptides of FLNA (Spearman’s Rho:
0.97). Thus, we included methionine peptides. As shown in
Figure 4C, the oxidized and non-oxidized forms of FLNA share
common interactors, but each form has also unique inter-
actors. The unique interactors of oxidized FLNA are enriched
in cellular responses related to cell-cell communication,
neutrophil degranulation, and smooth muscle cell contraction.
MULTILAYER-OMICS NETWORKS

Exploring the interconnectivity of the different molecules
that constitute cells, that is, proteins, genes, and metabolites,
could enable capturing more complex cellular mechanisms in
comparison to separately studying each omics modality.
Hammoud and Kramer (66) have recently reviewed such net-
works and their application to PPI, cell, and gene expression
networks. Such an example of a multi-omics network recon-
struction software is COSMOS (67), which combines tran-
scriptomics, phosphoproteomics, and metabolomics datasets
to build a multi-omics network. Using prior knowledge, this
Mol Cell Proteomics (2023) 22(8) 100607 7



FIG. 4. Interpreting cardiac and plaque protein networks using scRNAseq data and the effect of oxidation PTM in the interactions of
Filamin-A (FLNA). A, uniform manifold approximation (UMAP) feature plots of the expression of the top central nodes (hubs) of the network and
other central proteoglycans, using the Hocker et al. single-cell RNA-seq dataset (83) of human heart tissue samples (8993 cells from two healthy
donors) from the ExpressHeart web portal (84). B, expression dot plots of top three central proteins (hubs) in the carotid plaques network and the
cardiac tissue network and other central in the cardiac protein network proteoglycans (Fig. 2) using the PlaqView web tool (85), scRNA-seq data
from carotid plaques (Pan et al. dataset (86), n = 3) and Aran et al. method (87) to label cell clusters. C, label-free discovery mass spectrometry
data of 12 carotid endarterectomy samples were used from the study of Langley et al. (61). Data was exported in peptide level from Proteome
Discoverer software and oxidation of proline, lysine, and methionine was used as a dynamic modification. The network was reconstructed using
the WGCNAmethod (24) with the Pearson’s correlation method, a first soft power of 10 and a final hard threshold of 0.25. Nodes are proportional
to the degree of each protein (based on all proteins network), edge width is proportional to the MI metric, and node colors are set according to
the oxidation modification (light grey for unmodified proteins and pink for oxidized proteins, with the unmodified and oxidized form of FLNA
having light blue and light purple color respectively). EC, Endothelial cells; FB, Fibroblast cells; Mo, Monocytes/macrophages; NK, Natural Killer
cells; SMCs, Smooth Muscle Cells.
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method first builds networks from omics datasets from public
databases, then refines those networks by removing the
edges that create incorrect predictions when applied to only
one omics modality and, finally, further filters the network
based on only differentially expressed genes, proteins, and
metabolites. The resulting network consists of the differentially
expressed molecules and their interactors in a set number of
regulatory steps away, creating a causal network.
REPRODUCIBILITY AND METHODS SHARING

As highlighted in Table 1, various methods are available for
reconstructing different types of networks using proteomics
data. These methods often require different programming
languages, input and output file formats, and software pack-
age versions. In addition, different operating system re-
quirements can further complicate the use of these tools and
the reproducibility of results and analysis. To address this
8 Mol Cell Proteomics (2023) 22(8) 100607
problem and ensure reproducibility, Netbooks (68) have been
developed either based on Jupyter Notebooks (69) or other
markdown formats, including R Markdown (70). Jupyter
Notebook is a web-based, open-source application originally
designed for Python programming, but it now supports over
50 programming languages. With Jupyter Notebook, users
can create and share documents that contain text, code, and
other project-related materials. These documents, known as
notebooks, can include various types of output, such as plots,
interactive graphics, and other visualizations, and can be
easily manipulated using third-party software tools.
CONCLUSION

The reconstruction and study of different types of disease
networks, as demonstrated in this review article, is mostly
based on the reconstruction of co-expression networks using
established pipelines such as WGCNA, or on the use of static
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commercial (e.g. IPA) or publicly available (e.g. STRING) PPI
networks. Despite their simplicity and ease of use, they have
their limitations. Many researchers try to overcome this issue
by combining proteomics with genomics data in an attempt to
identify pQTL (71, 72), but these approaches are limited to
genomic variants which alter protein abundances and, thus,
fail to capture pathogenic mechanisms related to post-
translational modifications, protein degradation, and protein-
protein interactions. To overcome these limitations, more
robust pipelines and methods are needed to reconstruct and
study directed regulatory networks, which are more suitable
for generating and validating causality hypotheses and per-
forming simulations. Moreover, multi-omics networks
combining RNA and protein networks (17, 73) and the inte-
gration of single-cell RNA-sequencing and proteomics data
(74), further allow the parallel analysis of transcriptional and
translational mechanisms, but this analysis requires the
development of new methods, such as the consensus clus-
tering (75) that has been recently introduced.
Another important aspect is the validation of these network

findings. Network analysis is a strong tool for hypothesis
generation but its application on direct or indirect interactions
between proteins should be further validated with additional
experimental techniques. Two-hybrid screening is a widely
used method to detect binary interactions in eukaryotic cells.
One of the main limitations of this technique is that it can
generate false positives or false negatives. Other techniques
for experimentally validating PPI networks at scale include
MS-based techniques. In affinity purification (AP-MS) a bait
protein is purified with antibodies along with its potential
interactor partners and these purified proteins are then iden-
tified by MS. In cross-linking MS (XL-MS), a protein mixture is
incubated with chemical cross-linkers and then analyzed by
LC-MS/MS for cross-linked peptides. Further support can be
derived from co-fractionation experiments coupled to MS,
where samples are lysed, and fractionated, and each fraction
is analyzed with LC-MS/MS and protein abundances are
plotted across fractions. Co-fractionation, however, is no
proof for genuine protein interactions but can be considered
as supporting evidence for an interactome network (76). The
development of cross-linking mass spectrometry technologies
(77) has allowed for the validation of protein-protein in-
teractions on large scale, while single-cell proteomics (78, 79)
can provide an additional layer of validation for the findings
inferred by combining protein networks and single-cell RNA-
sequencing data.
The network reconstruction process is highly affected by

covariates and medications should thus be taken into
consideration when reconstructing networks and when
interpreting findings based on them. Moreover, as protein
interaction networks are significantly different among
different diseases and sample types, with cell composition
being one of the most important factors. Thus, it is paramount
that networks should be reconstructed specifically for each
tissue type and disease entity, while when proteomics data
are used for reconstructing the networks post-translational
modifications should be taken into consideration as illus-
trated in the example provided in the present manuscript for
carotid plaque networks. With all these factors taken into
consideration, the comparisons of these networks become
more meaningful with regard to identifying potential patho-
physiological mechanisms that can then be further validated
experimentally.
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