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Proteomics and lipidomics improve traditional ASCVD risk prediction. Plasma proteomics and lipidomics hold a major promise in improving ASCVD risk 
prediction offering high-throughput assessment using different techniques. Albeit retrospectively, large proteomic and lipidomic studies have consistently 
demonstrated improved ASCVD risk prediction in terms of discrimination and reclassification benefit compared to risk scoring with clinical characteristics. 
Future studies into clinical utility are needed for widespread clinical implementation. ASCVD, atherosclerotic cardiovascular disease; AUC, area under the 
receiver operating curve; non-HDL-C, non-high-density lipoprotein cholesterol; SCORE2, Systematic COronary Risk Evaluation 2 system; SMART2, 
Second Manifestations of ARTerial disease 2; LC-MS, liquid chromatography–mass spectrometry; MS, mass spectrometry.

Abstract

Given the limited accuracy of clinically used risk scores such as the Systematic COronary Risk Evaluation 2 system and the Second Manifestations of 
ARTerial disease 2 risk scores, novel risk algorithms determining an individual’s susceptibility of future incident or recurrent atherosclerotic cardio-
vascular disease (ASCVD) risk are urgently needed. Due to major improvements in assay techniques, multimarker proteomic and lipidomic panels 
hold the promise to be reliably assessed in a high-throughput routine. Novel machine learning-based approaches have facilitated the use of this high- 
dimensional data resulting from these analyses for ASCVD risk prediction. More than a dozen of large-scale retrospective studies using different sets 
of biomarkers and different statistical methods have consistently demonstrated the additive prognostic value of these panels over traditionally used 
clinical risk scores. Prospective studies are needed to determine the clinical utility of a biomarker panel in clinical ASCVD risk stratification. When 
combined with the genetic predisposition captured with polygenic risk scores and the actual ASCVD phenotype observed with coronary artery 
imaging, proteomics and lipidomics can advance understanding of the complex multifactorial causes underlying an individual’s ASCVD risk.

Keywords Proteomics • Lipidomics • Multiomics • ASCVD • Risk score

Introduction
Identification of patients at greatest risk of atherosclerotic cardiovascular 
disease (ASCVD) events poses a major challenge in both primary and 
secondary prevention.1–3 The vast majority of primary prevention pa-
tients at greatest risk remains unidentified prior to their first clinical 
event.4 In secondary prevention, the ASCVD event recurrence rate re-
mains high despite adhering to guideline recommendations for treat-
ment.5 To effectively reduce the increasing global burden of ASCVD, 
improvement in risk stratification is of essence. Currently used clinical 
risk algorithms, including the Framingham risk score, the Systematic 
COronary Risk Evaluation 2 (SCORE2) system, and the Second 
Manifestations of ARTerial disease 2 (SMART2),6–10 are based on trad-
itional risk factors for cardiovascular disease and, retrospectively, predict 
future events with limited accuracy. The current clinical risk scores in-
clude risk factors such as smoking, hypertension, diabetes, and hyperchol-
esterolaemia that cannot encompass the multitude of pathophysiological 
processes contributing to the onset and progression of ASCVD, nor do 
these scores incorporate the heterogeneity in interindividual atherogenic 
vulnerability. The limitations of current risk prediction algorithms are an 
even more urgent problem in view of the rapidly expanding armament-
arium of ASCVD risk lowering medications such as inclisiran,11,12 so-
dium–glucose cotransporter 2 inhibitors,13–15 glucagon-like peptide-1 
agonists,16,17 bempedoic acid,18,19 and anti-inflammatory agents,20,21

which due to their high costs mandate to restrict use in patients at highest 
risk or patients who are likely to benefit the most from the given ther-
apy.22 Thus, there is an urgent need for reliable instruments determining 
an individual’s susceptibility of future or recurrent ASCVD risk.

Over the last years, we have witnessed several promising develop-
ments which may prove useful to optimize a more personalized risk ap-
proach. Such developments include genetic tools such as the use of 
polygenic risk scores, which allow the identification of genetic predis-
position (or ‘vulnerability’) towards ASCVD risk and are in part inde-
pendent from the traditional ASCVD risk factors.23–25 In parallel, 
technical improvements in imaging modalities, comprising coronary ar-
tery calcium scoring and coronary computed tomography angiography 

(CCTA), have facilitated a further improvement in individualized risk 
prediction with good reproducibility especially when analyzed using 
artificial intelligence.26,27 Apart from genetic markers and capturing 
structural changes in the arterial wall by imaging, many efforts have fo-
cused on the incremental value of blood biomarkers as a ‘liquid biopsy’ 
of either causal or sequential markers for ASCVD risk. At present, few 
biomarkers are proposed for use in ASCVD risk prediction, i.e. high- 
sensitivity C-reactive protein.28 Notably, plasma markers such as 
N-terminal pro-brain natriuretic peptide (NT-proBNP) and high- 
sensitivity troponin, when used in isolation, have a relatively limited 
additive value over traditional risk factors including age in ASCVD 
risk prediction.29,30 Thus, attention has shifted towards the use of 
‘-omics’ approaches, in particular proteomics and lipidomics. These 
two major molecular moieties, proteins and lipids, have both shown 
to hold promise to further improve ASCVD risk prediction.31–39

Plasma proteomics is a rapidly evolving field of research. The term 
‘proteome’ was first introduced by Wilkins and Williams in 1994.40

The plasma proteome refers to all proteins present in plasma.41 The 
plasma proteome is the most complex proteome in the human body. 
The concentrations of proteins in plasma span over 12 orders of mag-
nitude in linear dynamic range. In the past few years, development and 
optimization of protein detection assays have enabled the measure-
ment of thousands of plasma proteins.

In addition to the plasma proteome, the plasma lipidome has at-
tracted interest in the omics revolution for ASCVD risk prediction 
thanks to rapid technological advancements in mass spectrometry 
(MS). The numerous plasma lipid species can be categorized in six major 
lipid classes: fatty acyls, glycerophospholipids, glycerolipids, sphingoli-
pids, sterols, and prenols.42 Of these categories, sphingolipids (cera-
mide species), fatty acyls, and glycerolipids (triglyceride species) have 
attracted most attention in clinical studies.43

Despite these technological advances and encouraging first results 
over the last years, neither multimarker proteomics nor lipidomics pa-
nels have been adopted by current prevention guidelines.6 Thus, this re-
view focuses on a key question: can targeted plasma proteomics and 
lipidomics meaningfully improve ASCVD risk prediction?



1596                                                                                                                                                                                    Nurmohamed et al.

The discovery pipeline towards 
targeted proteomics or lipidomics 
panels
The process of identifying biomarker candidates with prognostic value 
for ASCVD events should start with an untargeted discovery approach. 
This approach can identify novel lipids and proteins potentially relating 
to ASCVD risk. After successful identification of ASCVD-related bio-
marker candidates, a targeted approach can be used to quantify levels 
of previously identified biomarker levels in a high-throughput routine, 
e.g. to improve ASCVD risk stratification. For lipidomics, the targeted 
approaches generally rely on similar (MS-based) techniques compared 
to the discovery approach, while targeted proteomics analyses gener-
ally use different methods for high-throughput use.

Analytical approaches for discovery 
proteomics
The use of discovery proteomics enables the detection of proteins in a 
particular sample without a priori selection of proteins. For such an ana-
lysis, MS is mainly used (although large panel assays with preselected 
proteins such as SomaScan or Olink have also been reported for dis-
covery). Plasma proteins are subjected to enzymatic digestion giving 
rise to peptides (bottom-up approach).44 The mass spectrometer ana-
lyses these peptides and the resulting spectra can be matched to spe-
cific proteins using a database or a spectral library. This unbiased 
approach allows for identification of thousands of proteins without 
the need for binders. Importantly, discovery proteomics using MS is 
biased towards the more abundant plasma proteins. This lack of sensi-
tivity of MS in the low abundant protein range can be circumvented 
using several techniques such as depletion of high-abundance proteins, 
prefractionation, or nanoparticle enrichment.45,46

Analytical approaches for targeted 
proteomics
For high-throughput quantification of a set of particular proteins, a targeted 
proteomics approach can be used. Technological advances over the last 
years have resulted in multiple methods to clinically perform such targeted 
proteomics. Using selective reaction monitoring, multiple reaction monitor-
ing, or parallel reaction monitoring, MS can be used to measure specific pep-
tides. However, the targeted MS approaches also fail to detect very low 
abundant plasma proteins without sample preparation, similar to the dis-
covery of MS.47 Apart from MS, the most widely used methods for targeted 
proteomics are classical immunoassays, proximity ligation assays, and 
aptamer-based assays. Such approaches—although measuring only a prede-
termined subset of proteins—allow for high-throughput assessment of a 
large number of proteins. Over the last years, two techniques have been 
the most widely used: proximity extension assays (Olink Biosciences, 
Uppsala, Sweden) and aptamer technology (SomaScan Assay, Somalogic, 
Boulder CO, USA) (Figure 1A). For every protein, the proximity extension 
assays use an antibody pair labelled with unique DNA oligonucleotides, 
thereby reducing cross-reactivity and increasing specificity.48 The most re-
cent version of the assay is able to measure 3072 different proteins in plas-
ma. Once both antibodies have bound their specific epitopes on the 
protein, the DNA oligonucleotides hybridize and are extended after add-
ition of DNA polymerase. Using quantitative polymerase chain reactions 
(qPCR) or next-generation sequencing as a readout, a relative concentra-
tion is returned for every protein on the panel. The Olink panels have 
shown good reproducibility and stability for the vast majority of proteins 

on the panels.49 In contrast, the SomaScan assay uses a protein affinity- 
based approach with modified aptamers rather than antibodies to quantify 
relative protein concentrations in plasma.50,51 These modified aptamers are 
single-stranded DNA (or RNA) oligonucleotides which can bind to specific 
proteins in a highly multiplex platform. The most recent assay can measure 
up to 6596 unique proteins.49 Importantly, both the large proximity exten-
sion assay panels and the aptamer-based assay result in relative protein va-
lues rather than absolute protein concentrations. Of note, however, the 
most recent smaller panels with the proximity extension assay from 
Olink (48 proteins) also allow for absolute protein quantification.

Two recent studies have compared the targeted proteomics ap-
proaches by Olink and Somalogic.52,53 Approximately one-third of 
∼600 overlapping proteins from both platforms showed at best a modest 
correlation between platforms, and another one-third only showed me-
dium correlations.53 Thus, there are discrepancies between these two dif-
ferent platforms, possibly caused by unspecific binding, protein 
interactions, post-translational modifications, protein truncation, and pro-
teolytic cleavage products, which are likely not to be identified.54 Overall, 
the Olink platform showed more intra- and interassay variability, but was 
more accurate when comparing the platform protein levels to genetic 
readouts and protein quantification by conventional enzyme-linked im-
munosorbent assays (ELISA), compared to the Somalogic platform.53 A 
previous study showed that SomaScan—since the modified aptamers 
mostly rely on a single binder (in contrast to the proximity extension assay 
with an antibody pair)—has limited specificity for certain proteins, e.g. 
growth differentiation factor (GDF)-8 and GDF-11.55 Although both pa-
nels allow for high-throughput protein profiling, these limitations in speci-
ficity and reproducibility warrant further investigations and must be 
overcome before clinical implementation can be realized.

Next to these high-throughput and large panel approaches, there are 
several other non-MS proteomic technologies with smaller panels avail-
able, such as the Luminex, MesoScale Discovery, and ProterixBio.56

Limited sensitivity and cross-reactivity observed with these assays have re-
stricted their application in large, high-throughput settings.57,58 Chip-based 
proteomic technologies currently in development hold promise and could 
advance the current biomarker field.59 Finally, a novel MS-based approach, 
data-independent acquisition, combines both discovery and targeted pro-
teomics approaches.60 This technique enables the combination of a broad 
coverage spectrum with the high-throughput properties of a targeted 
proteomics approach, however is still limited by a lack of sensitivity.61

Analytical approaches for lipidomics
For lipidomics, methods for both discovery and targeted lipidomics rely on 
MS. Mass spectrometry can be coupled to prior separation by gas chroma-
tography (GC-MS) or liquid chromatography (LC-MS). Alternatively, lipid 
extracts can be directly infused (direct-infusion MS). The latter two ap-
proaches are the most widely used (Figure 1B). Liquid chromatography– 
mass spectrometry first separates the lipid species based on their chemical 
properties by liquid chromatography before ionization and detection by MS, 
whereas direct-infusion MS infuses lipid species without prior separation 
before MS.62,63 The advantage of LC-MS is that it is a very accurate and sen-
sitive method because of the separation of lipid species by LC, while 
direct-infusion MS is less sensitive for low-abundant lipid species but is easier 
to use and can capture many lipid species at once.43 One of the most widely 
used lipidomics platforms, developed as well as clinically validated by Zora 
Diagnostics, measures the levels of four ceramide species in plasma using 
LS-MS.64 These ceramide levels are usually interpreted in ratios—thereby 
reducing impact of sample variability—which reduces intra- and interassay 
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variability.64 Other platforms that have been used in ASCVD studies were 
mainly LC-MS-based techniques detecting hundreds of lipid species.

Atherosclerotic cardiovascular disease 
risk prediction with high-dimensional 
proteomics or lipidomics data
The vast majority of proteomics or lipidomics analyses results in high- 
dimensional data sets including up to 1000 variables. This contrasts 
large studies into ASCVD risk prediction with traditional clinical char-
acteristics where the number of patients greatly exceeds the number 
of predictors (P<<n). In most proteomics or lipidomics studies, the 
amount of proteins or lipid species analyzed is comparable to the num-
ber of patients (P≈n). However, with the assay improvements over the 
last years, novel studies will have to deal with more predictors than 
study subjects (P > n). This abundance of variables usually means that 
traditional regression modelling can no longer be used for ASCVD 
risk prediction if one considers the traditionally used rule of thumb 
of ‘one variable in 10 subjects’.65 To analyse these high-dimensional 
data sets without overfitting, a relatively novel but rapidly improved ap-
proach is needed: machine learning.

There are several statistical and machine learning approaches which 
have been used in large-scale biomarker studies for ASCVD risk pre-
diction deserving closer attention: least absolute shrinkage and selec-
tion operator (LASSO) for traditional regression models, artificial 
neural networks, and extreme gradient boosting (XGBoost). Least 

absolute shrinkage and selection operator is one of the oldest meth-
ods used and can be used for variable selection and regularization for 
traditional regression models.66,67 The L1 regularization in the LASSO 
regression will result in shrinkage of coefficients to zero and therefore 
can lead to elimination of variables from the model (dimensionality re-
duction).61 While relatively simple to use, a limitation of the tradition-
al regression method is that it cannot account for non-linear 
relationships and between-variable interactions which are usually pre-
sent in large-scale biomarker studies.61 For these purposes, more so-
phisticated machine learning-based approaches such as artificial neural 
networks or gradient boosting can be applied. However, these ma-
chine learning models still need to be coupled with dimensionality re-
duction techniques to avoid risk of overfitting.68–70 Machine learning 
methods are especially useful in studies with numerous biomarkers 
(e.g. >50) since they can combine many biomarkers modeling their 
complex interactions which are not detected with traditional statistic-
al approaches. Artificial neural networks were created to mimic bio-
logical neural networks.71 In general, they are very efficient in difficult 
tasks (e.g. image recognition) but are complex to understand and need 
a large amount of data. Extreme gradient boosting combines an en-
semble of weak prediction trees and performs well in generalization 
between studies thanks to arbitrary loss functions.72 In general, gradi-
ent boosting machines are easy to use and perform well in accuracy 
and external validation of a model. A major advantage of the artificial 
neural networks as well as the gradient boosting machines 
over traditional statistical modelling is that they can cope with a larger 

Figure 1 Methods for performing plasma proteomics and lipidomics. Characteristics of the most frequently used analysing methods for plasma pro-
teomics (A) and plasma lipidomics (B) in large-scale studies. Shown are differences in proteins/lipid species, target/discovery, and strengths/limitations. 
The numbers shown reflect the maximum number of proteins/lipid species of the used techniques in the clinical studies (Tables 1 and 2) included in the 
current review. Created with BioRender.com. MS, mass spectrometry.
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number of variables, non-linear relationships, and between-variable 
interactions.

Measuring model performance in 
atherosclerotic cardiovascular  
disease risk prediction
After training a prediction model in a particular data set, the goal is to 
validate its performance in predicting a particular outcome. 
Especially with machine learning models—which have more flexibil-
ity than traditional regression models—there is a significant risk of 
overfitting the developed model on the training data set.73

Overfitting implies that the model is trained (too) well with the 
data set correlations whereas it may perform poor in other popula-
tions or data sets, thus limiting its generalizability. Therefore, it is of 
utmost importance to validate a developed model on data that was 
not used to train the model. This can be achieved using internal val-
idation: splitting the initial data set into a training set and a separate 
test set to measure model performance. This can be repeated mul-
tiple times, using different portions of the dataset (k-fold cross- 
validation) to train and test the model. The optimal method of model 
validation is external validation: validating the constructed model in an 
independent data set or cohort. In well-conducted machine learning 
studies, one can compare the performance in the derivation cohort 
to the performance in the independent validation cohort to test the 
generalizability of the developed model.

To evaluate model performance, there are three major types of per-
formance measures with clinical value: discrimination, calibration, and 
reclassification.

Discrimination refers to the ability of the model to discriminate be-
tween subjects with and without the outcome. It is used to measure 
classification performance on a binary outcome, e.g. the occurrence 
of an ASCVD event. The area under the receiver operating curve 
(AUC) or C-statistic (which are identical for a binary outcome) is mostly 
used to assess the discrimination performance.74 These receiver oper-
ating characteristic (ROC) curve plots illustrate the sensitivity and the 
specificity of the test for different cut-offs chosen.

Calibration is an important measure to assess the clinical performance 
of a model. It specifies the relationship between the predicted probability 
of a certain outcome and the actual observed frequency of the outcome. 
In other words, will the predicted risk in a certain risk group correspond 
to the observed risk in this group? For a binary outcome (event/non- 
event), calibration can be displayed using a calibration plot with the pre-
dicted probability on the x-axis and the observed event rate on the 
y-axis. This can be done using decile or quintile groups of predicted prob-
abilities. If perfectly calibrated, the intercept of the calibration plot will be 
exactly 0 while the slope of the calibration plot will be 1.

Reclassification relates to the ability of a novel model to correctly reclassify 
subjects compared to a reference model. It can be used to estimate the addi-
tive value of the new model compared to the clinical standard or existing mod-
el. Upward improvement of subjects with the outcome compared to the 
reference model will improve classification, while downward reclassification 
in subjects with the outcome reduces classification accuracy. This reclassifica-
tion can be presented in a reclassification table or with reclassification mea-
sures such as the net reclassification improvement (NRI) or the integrated 
discrimination improvement (IDI).74,75 Due to the different methods used 
for the calculation of reclassification indices, particularly for the NRI (e.g. cat-
egorical and continuous),76 these indices should be interpreted with caution 
and cannot be compared directly between most studies.

Recent and key studies using 
proteomics for atherosclerotic 
cardiovascular disease risk 
prediction
The first studies into ASCVD risk prediction with relative small targeted 
plasma proteomics panels were performed in the Framingham Heart 
Study, published approximately 10 years ago.77,78 Since then, targeted 
plasma proteomics signatures have been correlated to a plethora of dis-
ease phenotypes, such as coronary plaque morphology,79 stroke,80 and 
type 2 diabetes mellitus.81 Several studies during the last years have fo-
cused on developing and validating a protein risk model for clinical pre-
diction of ASCVD events (Table 1).

Ganz et al.33 were the first to develop a novel protein model for 
ASCVD risk prediction which was validated in an external cohort. In 
this study, levels of 1130 proteins were determined with a modified ap-
tamer technique in two separate cohorts of more than 900 high-risk 
subjects with established ASCVD. Variables were selected using 
LASSO techniques, resulting in a nine-protein Cox regression model 
which outperformed clinical risk prediction using a refit Framingham 
model (net reclassification index 0.43) in predicting a composite 
ASCVD outcome, although overall discriminative power was limited 
(AUC 0.70) and included established biomarkers such as troponins. 
Ho et al.78 investigated the prognostic value of 85 proteins determined 
with a modified ELISA for a composite ASCVD outcome in 3523 sub-
jects from the Framingham Heart Study. Only one protein (Growth dif-
ferentiation factor-15; GDF-15) provided additive prognostic value 
when added to the Cox regression clinical risk prediction model, result-
ing in an AUC of 0.76. Of note, GDF-15 is highly correlated to age. Both 
the early studies by Ganz et al. and Ho et al. used classical Cox regres-
sion to develop their risk prediction models, which prevents accounting 
for non-linear relationships as well as protein–protein interactions.

More recent studies implemented more advanced machine learning 
techniques for the proteomics data analysis. Hoogeveen et al.31 used 
extreme gradient boosting to create a 50-protein model for ASCVD 
risk estimation in two primary prevention populations. Using proximity 
extension assays for 368 proteins in two parallel case–control studies of 
822 and 702 patients, respectively, the protein model outperformed 
the clinical risk model in predicting ASCVD events. Although there 
was a significant benefit over the clinical model (ΔAUC 0.10), the over-
all discriminative value of the protein model was still limited in the val-
idation cohort (AUC 0.70). The same proximity extension assay 
method for protein analysis was used by Unterhuber et al.,35 who mea-
sured 92 cardiovascular-related proteins in 1998 patients at increased 
ASCVD risk from the LIFE-Heart Study and validated these findings 
in 772 patients from the PLIC cohort. Machine learning protein predic-
tion with extreme gradient boosting or artificial neural networks greatly 
outperformed both protein prediction of major adverse cardiovascular 
events (MACE) with regression models and traditional risk prediction 
with the Framingham and SCORE algorithms (AUC 0.91). Another re-
cent study by Nurmohamed et al.32 investigated the prognostic value of 
276 proteins from the proximity extension assay in two independent 
secondary prevention cohorts (SMART and Athero-Express). A 
50-protein extreme gradient boosting machine learning model outper-
formed the machine learning model with clinical parameters (AUC 
0.80, ΔAUC 0.04, NRI 0.17) in the validation cohort. The most recent 
and largest study to date, performed by Williams et al.,34 measured 
5000 proteins using the modified aptamer technique. A 27-protein 
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model was constructed after selection of parameters in the derivation 
cohort consisting of 813 secondary prevention patients using LASSO 
regression. This model was validated and compared to a refitted clinical 
risk model in an independent validation cohort of 11 609 patients from 
different studies. The final model yielded a moderate AUC of 0.73 but 
the protein model had a large impact on reclassification (NRI 0.43) 
compared to the clinical model.

Although there are marked differences in the proteins associated with 
(recurrent) ASCVD in the aforementioned studies, there is also a signifi-
cant overlap in these top proteins. Despite different machine learning ap-
proaches, in all three studies using the proximity extension assay, 
NT-proBNP/brain natriuretic peptide and kidney injury molecule-1 
(KIM-1) were in the top five of prognostic proteins.31,32,35 In addition, 
GDF-15 was in the top five in the two studies in which GDF-15 was in-
cluded in the biomarker panel. Other top proteins overlapping between 
the studies include matrix metalloproteinase-12 (MMP-12) and adrenome-
dullin. The studies performed with aptamers showed somewhat more in-
terstudy variation.33,34,78 This is possibly due to more unspecificity with the 
larger number of proteins analysed (>5000)—including a substantial num-
ber of proteins reflecting the same pathophysiological pathways—which 
will compete in ASCVD risk modelling. Matrix metalloproteinase-12 and 
GDF-8/11 were the only proteins that were present in both prediction 
models from the two studies by the group of Ganz et al. Of note, in the 
study by Ho et al., GDF-15 was the only protein with an additive value, 
which corresponds to the findings in the proximity extension assay studies. 
Altogether, comparison between these clinical studies is informative, but 
hampered by methodological and statistical differences. To unravel the im-
portance and independent prognostic power of the proteins, further stud-
ies should be designed to address the role of specific proteins as scores 
involving a large number of proteins can become a barrier for clinical im-
plementation. Instead, top proteins which were previously not studied, 
such as KIM-1, warrant further investigation.

Recent and key studies on 
lipidomics in atherosclerotic 
cardiovascular disease risk 
prediction
In parallel, a large body of evidence has linked plasma lipidomic traits to 
several disease phenotypes. Ceramides represent one of the best ex-
amples that have been extensively investigated to date. Increased levels 
of ceramides were found in acute coronary syndrom (ACS) patients,82

have been linked to insulin sensitivity in type 2 diabetes patients,83 are 
upregulated in chronic heart failure,84 and associated with a vulnerable 
plaque phenotype during intravascular ultrasound.85 In addition to cer-
amide species, genetic and imaging evidence has also shown that a 
broader set of lipid species is associated with ASCVD events and ad-
verse coronary plaque morphology.86–89 Furthermore, different apoli-
poproteins have also been associated to incident ASCVD.90 Over the 
past years, there have been several large studies investigating the role 
of lipidomics in ASCVD risk prediction (Table 2).

The group of Laaksonen has focused on using certain ceramide spe-
cies and developing corresponding ceramide scores on top of clinical 
characteristics to improve future ASCVD risk prediction. Using a spe-
cifically developed and validated high-throughput LC-MS assay, four 
ceramide species most strongly associated with ASCVD can be reliably 
measured in a total analysis time of 5 min per sample.64 Thanks to the 
preselection resulting in this limited number of variables, these 

parameters could easily be added to classical regression models. In their 
first large-scale study, internal validation of a clinical model plus the 
Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio resulted in an AUC of 0.82 
(ΔAUC 0.09 compared to clinical model alone) and an NRI of 0.17 
for prediction of cardiovascular death.36 The same group demon-
strated the incremental prognostic value of the ceramide score in the 
FINRISK cohort.91 Following these studies, Wang et al.92 showed a 
slight improvement for the ceramide score over clinical risk prediction 
for a composite MACE endpoint in a primary prevention case cohort 
study comprising 1017 patients (ΔAUC 0.01, NRI 0.22). Recently, 
Vasile et al.98 confirmed these findings in a community-based cohort 
of 1131 subjects, showing additive value of the ceramide score over 
standard clinical risk prediction for a composite endpoint of myocardial 
infarction (MI) and stroke (AUC 0.67, ΔAUC 0.05). The most recent 
studies by the Laaksonen group described a newly developed and ex-
tended risk score containing the four ceramide species but also three 
phospholipids.37 This novel risk score was developed and validated in 
three independent cohorts comprising 11 079 patients with angina pec-
toris or coronary artery disease (CAD) and outperformed the standard 
clinical risk score in predicting cardiovascular death (AUC 0.70, ΔAUC 
0.05 in validation, NRI 0.32 in derivation).37 In addition, this 
Cardiovascular Event Risk Test 2 (CERT2) score was used in another 
cohort of 11 222 stable CAD patients, where it significantly outper-
formed clinical characteristics in prediction of cardiovascular death 
(AUC 0.75, ΔAUC 0.02).96

Other studies have focused on a more lipidome-wide approach to im-
prove risk stratification. In 2014, Stegemann et al.38 investigated 135 lipid 
species determined with direct-infusion MS to predict 10-year risk of 
CVD in a cohort of 685 subjects from the Bruneck Study. Using 
LASSO selection, six lipid species from five different lipid categories 
[TAG(54:2), PE(36:5), CE(16:1), SM(34:2), LPC(20:5), and LPC(22:6)] 
were found that improved ASCVD risk prediction beyond clinical char-
acteristics using internal validation. Similarly, investigators from the 
Long-Term Intervention With Pravastatin in Ischemic Disease (LIPID) 
study showed that risk scores with respectively four and seven lipid spe-
cies selected from more than 300 LS-MS determined lipid species im-
proved prediction of cardiovascular death.39,94 In both studies, external 
validation showed additive clinical value with respective NRIs of 0.20 
(AUC 0.74, ΔAUC 0.02) and 0.48 (AUC 0.70, ΔAUC 0.06).

Furthermore, there are several smaller single-cohort studies which de-
serve further attention but were not externally validated. Razquin et al.93

performed a case cohort study with 983 subjects from the Prevención 
con Dieta Mediterránea (PREDIMED) trial measuring 202 lipid species 
with LC-MS and showed that addition of several lipid species slightly im-
proved internal prediction of MACE (AUC 0.71, ΔAUC 0.02). Poss 
et al.95 developed a novel 30-shingolipid score using LASSO regression 
which improved prediction of CAD when internally validated (0.72, 
ΔAUC 0.09). Finally, Ottosson et al.97 performed shotgun lipidomics 
(184 lipid species, direct-infusion MS) and used LASSO regression to cre-
ate a risk prediction model for MACE (AUC 0.81, ΔAUC 0.02).
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Implementation in atherosclerotic 
cardiovascular disease risk profiling
Can we implement proteomics and/or 
lipidomics in atherosclerotic 
cardiovascular disease risk algorithms?
Both proteomics and lipidomics have been extensively studied in 
large-scale retrospective studies, have outperformed clinical risk scores 
in terms of discrimination, and have shown clinically relevant reclassifi-
cation improvement. In addition, for lipidomics, Hilvo et al.99 already de-
veloped a ceramide–phospholipid risk chart for use in clinical practice. 
Nevertheless, several limitations remain that need to be addressed be-
fore a wider clinical use of both proteomics and lipidomics in ASCVD 
risk algorithms can be advocated.

The most important limitation of the described biomarker studies 
pertains to the fact that these were all retrospective studies. Even 
when validated in an external cohort, the analysis remains retro-
spective and, perhaps even more importantly, cohort-specific; there-
fore, the prospective performance in different populations remains 
unknown. To solve this issue, controlled large studies that prospect-
ively randomize patients according to their biomarker risk score and 
compare this approach to the currently used approach utilizing clin-
ical risk scores are warranted. In such prospective studies, the algo-
rithm cannot be calibrated; there should be a clear and interpretable 
risk score from a predefined (machine learning) algorithm, and there 
should be consensus about what risk threshold would require which 
treatment.

An ensuing problem to address is the choice of biomarkers to be in-
cluded in such a risk score. In the described studies using proteomics or 

lipidomics for cardiovascular risk prediction, there are large differences 
in the used methodologies and assessed panels and biomarkers which 
limit comparison. Even between some studies using similar panels, there 
are major differences in the proteins associated with adverse outcome. 
In fact, the more biomarkers are analyzed, the larger the between-study 
differences in the most important biomarkers, probably due to in-
creased competition of proteins reflecting similar pathways. Thus, for 
effective clinical implementation, it remains to be determined what bio-
markers from which omics approach are more strongly associated with 
future ASCVD. In addition, ASCVD endpoints were different in the 
large biomarker studies, and prognostic value of biomarker profiles 
may depend on the type of atherosclerotic disease, e.g. myocardial in-
farction vs. stroke, but also on the prevention setting. The majority of 
studies to date has focused on coronary artery disease, but it will be im-
portant for future studies to investigate prognostic value of biomarker 
panels in symptomatic cerebral and peripheral artery disease.

Nevertheless, combining and comparing the large studies per-
formed to date, there should be sufficient data to select the most im-
portant biomarkers for future prospective validation. When a panel of 
prognostic biomarkers can be selected, it should be feasible to com-
bine these in one customized high-throughput assay. Such a panel can 
then be combined with traditional clinical risk characteristics such as 
age, sex, smoking status, and blood pressure, as well as 
apolipoprotein B or low-density lipoprotein cholesterol (LDL-C) 
and lipoprotein(a) [Lp(a)]—depending on the prevention setting— 
to provide a comprehensive ASCVD risk score.6,10,100–103 One study 
prospectively investigating a small set of protein and lipid biomarkers 
(NT-proBNP, high-sensitivity troponin, cystatin C, four ceramide spe-
cies, and three phospholipid species) in a randomized controlled trial 
of 2000 patients is already underway (NCT04433052; www. 
coroprevention.eu).

Figure 2 A one-stop shop for future ASCVD risk prediction. A personalized atherosclerotic cardiovascular disease risk prediction in a one-stop shop 
can—in addition to clinical risk factors—incorporate a patient’s genetic predisposition, capture environmental and lifestyle factors in interaction with 
genetics using plasma biomarkers, and can define the actual phenotype of disease using coronary computed tomography angiography imaging. In add-
ition, the most ‘relevant’ pathways contributing to the cardiovascular risk in specific individuals could be identified and subsequently treated with specific 
therapies, depending on the specific risk factor signature (e.g. anti-thrombotic, anti-inflammatory, and other). Created with BioRender.com. ASCVD, 
atherosclerotic cardiovascular disease; CCTA, coronary computed tomography angiography.

http://www.coroprevention.eu
http://www.coroprevention.eu
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Finally, implementation of large panel biomarker data in clinical risk 
stratification requires availability of lab equipment as well as expertise 
with the generated output. Currently, such omics platforms as well 
as the supporting industries are predominantly focused on research ap-
plications. On top of equipment and expertise availability, compliance 
with the strict quality regulations in diagnostic facilities handling patient 
care remains a hurdle to be taken.

A personalized approach for 
atherosclerotic cardiovascular disease 
prediction
The 2021 European Society of Cardiology Guidelines on cardiovascular 
disease prevention have underlined the importance of individualized 
ASCVD risk prediction.6 Although widely used, current clinical risk 
scores seem to fail in accurately stratifying patients at ASCVD risk. For 
this personalized approach, improved risk stratification beyond clinical 
risk factors is needed. If implemented in a high-throughput, low-cost, 
and reliable way, both proteomics and lipidomics have the potential to 
meaningfully improve ASCVD risk prediction. Combined with genetic 
predisposition, which could potentially be captured with polygenic risk 
scores,23–25 and phenotypic features of the atherosclerosis in the artery 
wall captured with coronary artery imaging, integration with proteomic/ 
lipidomic data may lay the foundation for understanding the complex and 
dynamic nature determining an individual’s ASCVD phenotype.

Pending validation, such a ‘one-stop shop’ model combining these three 
pillars for ASCVD risk prediction could be implemented in clinical practice 
to pursue multidimensional personalized medicine (Figure 2). In such prac-
tice, patients—during a workup for cardiovascular risk management— 
would undergo blood withdrawal for clinical risk factors, plasma 
biomarkers, and DNA analysis (polygenic risk score), followed by a 
CCTA scan. Using a standardized machine learning algorithm, this multi-
dimensional datum can be translated into an individualized ASCVD risk 
prediction. Most importantly, such individualized, multidimensional 
ASCVD risk prediction should be reported in a simple risk score to enable 
clinical implementation. Furthermore, it is tempting to speculate that in-
corporation of pathway analysis in the omics sets—when feasible—may 
facilitate identification of most affected pathways underlying an individual’s 
ASCVD risk, which could assist in defining the best therapeutic strategies 
(thus adding anti-inflammatory, anti-thrombotic, and/or lipid-lowering 
agents).28 In relatively young primary prevention patients (e.g. below 55 
years), the combination of genetic testing, measurement of plasma bio-
markers, and CCTA imaging is likely to identify high-risk patients which 
would not have qualified for treatment following the SCORE2 charts. 
In contrast, in patients with a low polygenic/biomarker risk score and ab-
sence of coronary atherosclerosis, further treatment could be withheld. In 
patients with a high polygenic/biomarker risk but absence of coronary ath-
erosclerosis on imaging, strategy will depend on the age of the patient. 
Younger patients with a high polygenic/biomarker risk are likely to be 
treated, given their lifetime ASCVD risk increase. Conversely, older pa-
tients with absence of coronary disease on imaging (e.g. above 65 years) 
may not require treatment in view of their low ASCVD risk considering 
the ‘warranty period’ of a normal cardiac CT scan.104 Given the profound 
cost reductions in these diagnostic approaches over the last years com-
bined with the high costs of novel therapeutics, this individualized risk- 
guided strategy is likely to be cost-effective. It should, however, be taken 
into account that the endeavour to perform a prospective clinical utility 
study of such an integrated approach will require an enormous 
investment.

For secondary prevention, the same approach could be used after a 
cardiovascular event to identify patients with a higher residual risk 
despite guideline-based risk-lowering therapies. In patients with an un-
identified high polygenic, biomarker, and/or imaging-derived risk, it can 
be considered to apply lower target levels for established risk factors 
(e.g. LDL-C), as is currently advocated for e.g. primary prevention pa-
tients with elevated Lp(a), or to prescribe additional preventive therap-
ies, depending on the specific risk factor signature (e.g. anti-thrombotic, 
anti-inflammatory, and other).6

Pending the analytical and machine learning hurdles to take for such a 
sophisticated one-stop shop risk score, interim solutions such as pro-
posed by Hilvo et al.105—a risk chart combining imaging, lipidomic, 
and clinical data—may be implemented in the short-term.

Conclusions
Plasma proteomics and lipidomics hold a major promise to improve the 
limited prediction of individual ASCVD risk using currently available algo-
rithms (Graphical Abstract). Using several techniques, both plasma pro-
teins and lipids can be reliably assessed using high-throughput assays 
and have established additive value for ASCVD risk stratification, albeit 
retrospectively. There is a lack of prospective proteomics and lipidomics 
studies, and selection of prognostic biomarkers remains problematic due 
to substantial interstudy differences. Pending analytical and clinical valid-
ation, clinical utility studies investigating the value of biomarker panels 
when applied in clinical practice are eagerly awaited. Ultimately, prognos-
tic plasma biomarkers could be combined with genetic risk scores and 
coronary artery imaging to capture the complex, multidimensional ath-
erosclerosis process underlying an individual’s ASCVD risk.
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received.
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