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by inhibiting translational elongation
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Abstract

Pathological cardiac overload induces myocardial protein synthesis
and hypertrophy, which predisposes to heart failure. To inhibit
hypertrophy therapeutically, the identification of negative regula-
tors of cardiomyocyte protein synthesis is needed. Here, we identi-
fied the tumor suppressor protein TIP30 as novel inhibitor of
cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice
entailed exaggerated cardiac growth during experimental pressure
overload, which was associated with cardiomyocyte cellular hyper-
trophy, increased myocardial protein synthesis, reduced capillary
density, and left ventricular dysfunction. Pharmacological inhibi-
tion of protein synthesis improved these defects. Our results are
relevant for human disease, since we found diminished cardiac
TIP30 levels in samples from patients suffering from end-stage
heart failure or hypertrophic cardiomyopathy. Importantly, thera-
peutic overexpression of TIP30 in mouse hearts inhibited cardiac
hypertrophy and improved left ventricular function during pres-
sure overload and in cardiomyopathic mdx mice. Mechanistically,
we identified a previously unknown anti-hypertrophic mechanism,
whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A)
to prevent the interaction with its essential co-factor eEF1B2 and
translational elongation. Therefore, TIP30 could be a therapeutic
target to counteract cardiac hypertrophy.
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Introduction

Pathological cardiac hypertrophy, which predisposes to the develop-

ment of heart failure, frequently develops as consequence of ventricu-

lar pressure overload, myocardial infarction or due to inherited

cardiomyopathy (Heineke & Molkentin, 2006; Hill & Olson, 2008). It is

associated with decreased cardiac function, increased cardiomyocyte

size, interstitial fibrosis, and capillary rarefaction (Hein et al, 2003).

Many signaling proteins were identified that act in concert to trigger

transcription of a pro-hypertrophic gene program (Heineke & Molk-

entin, 2006; Hill & Olson, 2008). This gene program entails mainly

qualitative changes in gene expression, but does not account for the

quantitative changes during cardiac growth, which are characterized

by strong accumulation of newly synthesized proteins that can lead to

enlargement of the heart by more than 50% (Nagatomo et al, 1999;

McDermott et al, 2012). The strong increase in cardiac protein content
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mainly results from enhanced protein synthesis within the first 1–

5 days of pressure overload with or without a significant decrease in

protein degradation (Nagatomo et al, 1999; McDermott et al, 2012).

After 10–14 days, hypertrophy reaches its maximum and a new steady

state is attained, in which protein synthesis equals protein degradation

and cardiac mass remains stable (Nagatomo et al, 1999). mTOR as

catalytic subunit of the mTOR containing multiprotein complex 1

(mTORC1) promotes cardiac protein synthesis and hypertrophy mainly

by fostering translational initiation (Laplante & Sabatini, 2012).

mTORC1 inhibition by rapamycin or its partial deletion in zebrafish

improves cardiac function, although its complete genetic abrogation in

cardiomyocytes induces cardiomyopathy (Shioi et al, 2003; McMullen

et al, 2004; Ma & Blenis, 2009; Ding et al, 2011; Zhang et al, 2011b).

As overgrowth of the myocardium is associated with poor prognosis

during disease (Levy et al, 1990), the identification of currently largely

undefined endogenous negative regulators of hypertrophy at the level

of cardiomyocyte protein synthesis might reveal interesting future ther-

apeutic targets, especially when their abundance is dysregulated in fail-

ing hearts.

Protein synthesis is a tightly regulated process that is initiated at the

start codon by the 80S ribosome and continues into elongation wherein

the peptide chain increases its length cyclically one amino acid at a

time (Sasikumar et al, 2012). Translational elongation is catalyzed by

the eukaryotic translation elongation factor 1A (eEF1A), which in its

active GTP-bound form binds and delivers amino acid loaded tRNAs to

the A-site of the ribosome. By formation of the correct codon–anti-

codon pair between tRNA and mRNA, a conformational change in the

ribosome leads to GTP hydrolysis and release of then inactive, GDP-

bound eEF1A. GDP needs to be actively exchanged for GTP by the

guanine nucleotide exchange factor (GEF) eEF1B2, in order to enable

eEF1A to participate in another round of elongation.

Here, we characterized the 30 kDa protein TIP30 (also termed

Htatip2) as inhibitor of mRNA translation and cardiac hypertrophy

and revealed that it protects against heart failure during pathological

stimulation. TIP30 is ubiquitously expressed and is acting as tumor

suppressor, since reduced TIP30 levels were found in human cancers

and were related to enhanced tumor growth and metastasis forma-

tion (Shtivelman, 1997; Ito et al, 2003; Zhao et al, 2007; Li et al,

2009). Moreover, homozygous (Tip30�/�, KO) and heterozygous

(Tip30+/�, Het) Tip30 knock-out mice develop malignant tumors

starting at 18–20 months of age (Ito et al, 2003; Li et al, 2013; Chen

et al, 2014). The role of TIP30 in the heart, however, had so far not

been analyzed. TIP30 is well conserved across species, and crystallo-

graphic analyses suggest binding of NADPH, but found enzymatic

activity of TIP30 to be very unlikely (El Omari et al, 2005). Instead,

it was suggested that TIP30 might play a regulatory role by mediating

protein interactions (El Omari et al, 2005; Nakahara et al, 2009).

Accordingly, we demonstrate here that TIP30 interacts with eEF1A

to prevent association with its co-factor eEF1B2, thereby blocking

translational elongation and cardiomyocyte hypertrophy.

Results

TIP30 deficiency facilitates cardiac hypertrophy and failure

To assess the functional role of TIP30 during cardiac overload, we

subjected heterozygous (Het, with a 50–60% reduction of cardiac

TIP30) and homozygous Tip30 knock-out (KO, completely deficient

of TIP30) as well as wild-type (WT) mice to sham or transverse

aortic constriction (TAC) surgery (Fig 1A). While no phenotypic dif-

ferences were noted after sham operation, Het and KO mice devel-

oped more cardiac hypertrophy (i.e., increased heart weight/tibia

length ratio, HW/TL; Fig 1B) 6 weeks after TAC surgery. Het, but

not KO or WT mice exerted enhanced pulmonary congestion (in-

creased lung weight/TL; Fig 1C) as sign of cardiac dysfunction after

TAC. Accordingly, echocardiography revealed decreased cardiac

systolic function (fractional area change) in Het mice and increased

cardiac dilation (LVEDA) in Het and KO mice versus WT mice

6 weeks after TAC (Fig 1D and E). Increased dilation and wall thick-

ness of the left ventricle (indicative of enhanced hypertrophy), as

well as cardiac dysfunction, were already observed in Het (but not

KO) versus WT mice 2 weeks after TAC in echocardiography

(Fig EV1A–D). Because Het mice therefore showed a more promi-

nent phenotype than KO mice, we carried out most of the following

experiments in Het in comparison with WT mice. To rule out princi-

pal differences in the degree of pressure overload after TAC between

both genotypes, we conducted Doppler measurements of right

versus left carotid artery blood flow. The results indicated that a

similar degree of left ventricular pressure overload was reached in

Het and WT mice 2 days after TAC versus sham surgery

(Fig EV1E).

Direct analysis of left ventricular pressure development by

catheterization revealed decreased left ventricular contractility (dP/

dt max), relaxation (dP/dt min), and systolic pressure in Het versus

WT mice during pressure overload (Figs 1F and G, and EV1F).

Single cardiomyocyte contractility, however, was not different

between WT and Het cardiomyocytes after TAC at three different

pacing rates (Fig EV1G). Six weeks after TAC surgery, we found a

similarly reduced expression of a-myosin heavy chain (a-MHC), but

significantly more increased b-MHC expression in the myocardium

of Het mice (Fig 1H and I). Cardiac fibrosis was not different

between the experimental groups (Fig 1J and K), and accordingly,

the number of PDGFRa-positive cardiac fibroblasts was also not

changed between them (Fig EV1H and I). In line with the increased

HW/TL ratio, enlarged cardiomyocytes were found in Het versus

WT mice after TAC (Fig 1L). This augmented cardiomyocyte growth

was not accompanied by growth of the cardiac micro-vasculature,

since we detected a prominent reduction of the capillary/cardiomy-

ocyte ratio selectively in Het mice after TAC (Fig 1M and N). As

capillary rarefaction during pressure overload is known to be

maladaptive, it might at least partially contribute to cardiac dysfunc-

tion in Het mice during TAC (Heineke et al, 2007; Sano et al, 2007;

Heineke, 2012). In contrast to capillary density, the rate of apoptotic

(i.e., cleaved caspase 3 positive) cardiomyocytes was not different

between WT and Het mice (Fig EV1J). Profiling of the myocardium

of WT and Het mice after TAC by electron microscopy excluded

gross ultrastructural defects in these mice (Fig EV1K).

We next analyzed whether increased hypertrophy in Tip30 Het

mice was the result of TIP30 deficiency primarily in cardiomyocytes,

as these mice have systemically reduced TIP30 levels. Aggravated

cardiac hypertrophy and pulmonary congestion in Het mice after

TAC were reversed upon mild cardiomyocyte specific overexpres-

sion of TIP30 by a highly cardiomyocyte selective troponin T

promoter-dependent AAV9 vector (AAV9-TropT-TIP30; Figs 1O–R,

and EV1L and M; Werfel et al, 2014), indicating that lack of TIP30
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in cardiomyocytes of Het mice is predominantly contributing to the

observed phenotype in these mice.

Next, we assessed the impact of TIP30 on heart growth during

homeostatic conditions: With increasing age, 7-month-old Tip30 Het

mice developed enhanced hypertrophy (indicated by an increased

HW/TL ratio, an increased wall thickness in echocardiography, and

an increased cardiomyocyte area in histological sections) versus WT

mice without any additional stress stimulation, but this was not

associated with cardiac dysfunction or dilatation (Fig EV2A–G).

Reduced myocardial mTORC1 activation in Tip30 Het mice

Because we observed enhanced cardiac growth in Tip30 Het mice

during pathological stimulation and with increasing age, we

analyzed different cell growth-related signaling pathways in the

myocardium of WT and Het mice 6 weeks after sham or TAC

surgery. We detected a decreased activation of pro-hypertrophic

mTORC1 in Het mice after TAC, which was reflected by markedly

reduced levels of p70S6Kinase phosphorylation, reduced mTOR

phosphorylation and to a lesser extent 4E-BP1 phosphorylation

(Fig EV3A and B). A reduction in p70S6K phosphorylation was even

visible in Het versus WT mice after sham surgery. The decrease in

mTORC1 activation in the myocardium of Het mice was counterintu-

itive, because these mice showed more heart growth, and we

therefore propose that this was a secondary phenomenon to limit the

increased protein synthesis that we detected in the myocardium of

Het mice (see below). In addition, the decreased activation of ERK1/

2 as well as the increased AMPK activation in the myocardium of Het

mice after TAC might directly contribute to reduced mTOR activity

in Het mice (Wullschleger et al, 2006). The activation and/or abun-

dance of other growth-signaling pathways (p38/JNK-MAPK, eEF2,

Akt) was not significantly changed between WT and Het mice.

TIP30 overexpression restricts cardiac hypertrophy and improves
heart function

Neonatal rat cardiomyocytes (NRCM) are widely used as model

system to study cardiac hypertrophy. Stimulation of NRCM with the

pro-hypertrophic growth factors phenylephrine (PE), fetal bovine

serum (FBS), or endothelin-1 (ET-1) led to a mild (about twofold)

induction of TIP30 protein levels (Appendix Fig S1A). Since reduced

Tip30 expression in Het mice led to increased cardiac hypertrophy,

we wanted to assess whether TIP30 overexpression could inhibit

this response. We used a recombinant adenovirus to overexpress

TIP30 (Ad.TIP30) in NRCM (Fig 2A). When stimulated with ET-1 or

PE, Ad.TIP30 markedly reduced the increase in cell size compared

to Ad.Control-treated NRCM and the same trend was observed

during FBS stimulation (Fig 2B). Overexpression of TIP30 also

◀ Figure 1. TIP30 deficiency results in enhanced cardiac hypertrophy during pathological overload.

A Schematic representation of the study design and Western blot analysis for TIP30 and GAPDH in hearts from TIP30 wild-type (WT), heterozygous (Het), and
homozygous knock-out (KO) mice under basal conditions.

B–I Quantification of heart weight (HW)/tibia length (TL) ratio (B), lung weight (LuW/TL) ratio (C), echocardiographic fractional area change (D) and left ventricular
end-diastolic area (LVEDA; E), dP/dt max and dP/dt min (Millar catheter; F, G), and a-MHC and b-MHC transcript abundance (H, I). N = 4–18 mice/group, all
6 weeks after TAC or sham surgery. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. One-way ANOVA with Sidak’s multiple comparisons test.

J, K Representative images of Sirius red-stained heart sections (scale bar: 1 mm) (J) and fibrosis quantification (K) of indicated mice 6 weeks after TAC or sham surgery.
N = 3-5 mice/group.

L Quantification of cardiomyocyte area of isolated adult cardiac myocytes (N = 4–11 mice/group) of indicated mice 6 weeks after TAC or sham surgery. *P < 0.05.
One-way ANOVA with Sidak’s multiple comparisons test.

M, N Microscopy images of heart sections of indicated mice 6 weeks after TAC surgery stained for isolectin B4 (green) and WGA (red, M) and quantification of capillaries
per myocyte (N). (N = 5–7 mice/group, scale bar: 50 lm). **P < 0.01. One-way ANOVA with Sidak’s multiple comparisons test.

O Schematic representation of AAV-TopT-TIP30 study design.
P Western blot analysis for TIP30 and GAPDH in hearts from TIP30 wild-type (WT) and heterozygous (Het) after AAV-TropT-TIP30 or AAV-control (AAV-Con) injection

followed by 6 weeks of TAC surgery.
Q, R Quantification of HW/TL ratio (Q) and LuW/TL (R) ratio in AAV-Con or AAV-TropT-TIP30 treated Tip30 heterozygous (Het) or WT mice 6 weeks after TAC or sham

surgery (N = 5–11 mice/group). *P < 0.05, ***P < 0.001. One-way ANOVA with Sidak’s multiple comparisons test.

Data information: Data are shown as mean � SEM.
Source data are available online for this figure.

▸Figure 2. TIP30 overexpression inhibits cardiac hypertrophy.

A Western blot for TIP30 and GAPDH in neonatal rat cardiomyocytes (NRCM) after adenoviral transduction with Ad.Control (Ad.Con) or Ad.TIP30.
B–E Quantification of cardiomyocyte area, N = 6–8 samples/group (B), protein/DNA ratio, N = 9 samples/group (C), Acta1 mRNA transcript abundance, N = 3

samples/group (D), and cell death with a 7-AAD assay, N = 7 samples/group (E) in NRCM transduced with Ad.Con or Ad.TIP30 and stimulated as indicated. ET-1:
endothelin-1, FBS: fetal bovine serum, PE: phenylephrine. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. One-way ANOVA with Sidak’s multiple
comparisons test.

F Schematic representation of AAV-MLC-TIP30 study design.
G Western blot for TIP30 and Actin in mouse hearts with AAV9 mediated overexpression of TIP30 (AAV-TIP30) or from mice treated with a control AAV9 construct

(AAV-Con) followed by 2 weeks of TAC surgery.
H, I Quantification of HW/TL ratio, N = 8–13 mice/group (H) and cardiomyocyte area, N = 4–5 mice/group (I) 2 weeks after sham or TAC surgery in AAV-Con or AAV-

TIP30-treated C57BL/6 WT mice. *P < 0.05. One-way ANOVA with Sidak’s multiple comparisons test.
J Serial echocardiography with quantification of echocardiographic fractional area change 2, 4, and 6 weeks after sham or TAC surgery in AAV-Con or AAV-TIP30-

treated C57BL/6 WT mice (N = 10–14 mice/group and time point). **P < 0.01. One-way ANOVA with Sidak’s multiple comparisons test.

Data information: Data are shown as mean � SEM.
Source data are available online for this figure.
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blunted the increase in cellular protein content (measured as

protein/DNA ratio) in response to PE and the expression of the

hypertrophic marker gene Acta1 during ET-1 or PE stimulation

(Fig 2C and D). Because TIP30 overexpression was reported to

induce cell death in cancer models (Xiao et al, 2000), we analyzed

whether TIP30 acts similarly in cardiomyocytes. However,

cardiomyocyte death (assessed by 7-AAD staining) was not

enhanced by TIP30 overexpression with or without PE stimulation

(Fig 2E). Next, we analyzed the effects of cardiac TIP30 overexpres-

sion (via AAV9 vector, containing a modified myosin-light chain
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promoter) in WT mouse hearts in vivo (Fig 2F and G). In line with

the results from NRCM, transduction with AAV-TIP30 blunted the

increase in heart and cardiomyocyte hypertrophy visible in AAV-

control-treated mice in response to 2 weeks of TAC (Fig 2H and I).

Serial echocardiography revealed a sustained improvement of

systolic cardiac function in AAV-TIP30-treated mice 2, 4, and

6 weeks after TAC surgery (Fig 2J). Interrogation of growth signal-

ing in hearts or isolated cardiomyocytes with TIP30 overexpression

did not reveal any significant effects during hypertrophic stimula-

tion (Appendix Fig S1B and C).

TIP30 binds eEF1A

In order to elucidate the molecular mechanisms that underlie the

anti-hypertrophic effect of TIP30, we screened for TIP30 interacting

proteins by GST-pulldown assay from NRCM. A number of proteins

enriched in the GST-TIP30 versus the GST-pulldown (identified by

mass spectrometry) were at least partially associated with the trans-

lational apparatus: nucleolin (Ncl), eEF1A1, heterogeneous nuclear

ribonucleoprotein (hnRNP)A2/B1, and ribosomal protein (Rp)S3a

(Appendix Table S1). We verified the interaction of these proteins

with TIP30 in a GST-pulldown assay with GST-TIP30 constructs of

different length (Fig 3A). All identified proteins interacted with full-

length TIP30. While the first N-terminal 230 amino acids of TIP30

(total length: 242 amino acids) were necessary for interaction with

Ncl and Rps3a, only the first 50 amino acids were needed to interact

with eEF1A1, and full-length TIP30 was required for binding to

hnRNPA2/B1.

We subsequently focused on the interaction between eEF1A1 and

TIP30. We hypothesized that TIP30 exerts its anti-hypertrophic

effects by interfering with eEF1A1 and by inhibiting protein synthesis

during translational elongation. The interaction of both proteins was

verified by co-immunoprecipitation of GST-tagged TIP30 full-length

protein with Myc-tagged eEF1A1 (Fig 3B). Endogenous TIP30 and

eEF1A1 partially co-localized in cardiomyocytes as shown by

immunofluorescence staining (Fig 3C). We employed a proximity

ligation assay to more directly assess the interaction of both proteins

in situ. As demonstrated in Fig 3D, endogenous TIP30 interacted

with eEF1A1 (each interaction is indicated by a red dot). Endogenous

TIP30 and eEF1A1 were also co-immunoprecipitated from NRCM

(Fig 3E). A pulldown assay with GST-eEF1A1 showed that the N-

terminal 25 amino acids of TIP30 (as part of its NADPH binding

domain) are necessary for eEF1A1 binding (Fig 3F–H). In turn, a

pulldown assay with GST-TIP30 revealed that recombinant eEF1A1

lacking the middle domain, which is important for eEF1B binding,

could not bind TIP30, while domains one or three were not essential

for binding (Fig 3I).

Beside the ubiquitous eEF1A1, the heart also expresses its

isoform eEF1A2 (Chambers et al, 1998). While eEF1A1 mRNA and

protein were reduced after birth in the heart as previously reported,

we found that it is strongly re-induced in the adult myocardium in

response to TAC (Fig 3J and K). In contrast, eEF1A2 mRNA and

protein were markedly induced in the adult compared to neonatal

hearts, but remained unchanged after TAC. A GST-TIP30 pulldown

revealed that TIP30 also interacts with eEF1A2, the isoform of

eEF1A mainly expressed in adult myocardium (Fig 3L).

TIP30 inhibits the interaction of eEF1A1 with its co-factor eEF1B2

Next, we elucidated the consequences of the interaction between

TIP30 and eEF1A. eEF1A binds tRNAs and delivers amino acids to

the A-site of the ribosome during protein synthesis. To fulfill this

function, eEF1A binds eEF1B2 and exists in its GTP-bound form

(Pittman et al, 2009). Inactive, GDP-bound eEF1A is recycled to the

active form by the GEF eEF1B2. Because TIP30 binds eEF1A1 in its

middle region where also eEF1B2 binds (Fig 3I), we analyzed

whether TIP30 affects the interaction between eEF1A1 and eEF1B2.

Increasing concentrations of recombinant TIP30 decreased binding

between eEF1A1 and eEF1B2 in a GST-pulldown assay (Fig 4A).

Similarly, overexpression of TIP30 in PE-stimulated isolated

▸Figure 3. TIP30 interacts with eEF1A.

A Western blot analysis of GST-pulldown assays with GST-TIP30 fragments of the indicated length (as amino acids from N-terminus) with Myc-tagged binding
partners. Red asterisks indicate isolated GST-TIP30 fusion proteins.

B Western blot analysis of co-immunoprecipitation (IP) from HEK cells transfected with GST-TIP30 and eEF1A1-Myc.
C Confocal microscopy images of neonatal rat cardiomyocytes (NRCM) stained with antibodies for endogenous TIP30 (green) and endogenous eEF1A1 (red). DAPI:

blue (scale bar: 20 lm).
D Microscopy images of isolated neonatal rat cardiomyocytes and subsequent proximity ligation assay (PLA). Red: endogenous TIP30/eEF1A1 interaction; Blue: DAPI.

Control cells were stained for TIP30/Myc-tag interaction (scale bar: 50 lm).
E Western blot analysis of co-immunoprecipitation (IP) for endogenous TIP30 and eEF1A1 protein in NRCM after stimulation with phenylephrine for 24 h. IgG HC—

high chain of IgG molecule.
F Scheme showing the structure of TIP30-His deletion mutants that were used in GST-pulldown assays in (G). The C-terminal His-tag is highlighted in blue.
G, H Western blot analysis of GST-pulldown assays with GST or GST-tagged eEF1A1 (GST-eEF1A1) and TIP30-His full-length protein (TIP30-His) and TIP30 deletion

mutants DN25 (TIP30-DN25-His), DN52 (TIP30-DN52-His), DC15 (TIP30-DC15-His), and D102-107 (TIP30-DN102-104-His, G) and Western blot analysis of GST-
tagged eEF1A1 and GST-control (H).

I Scheme depicting eEF1A domains, their different binding patterns for GDP/GTP or eEF1B2 and the His-tagged eEF1A1 mutants. Western blot analysis of GST-
pulldown assays with GST-TIP30 and the indicated His-tagged eEF1A1 mutants are shown.

J Quantitative real-time PCR analysis of eEF1A1 and eEF1A2 mRNA abundance in hearts from neonatal mice, adult wild-type mice (adult) and adult wild-type mice
2 weeks after TAC surgery (adult TAC, N = 3–4 mice/group). *P < 0.05, ***P < 0.001. One-way ANOVA with Sidak’s multiple comparisons test.

K Western blot analysis for eEF1A1, eEF1A2, and GAPDH in hearts from wild-type mice at the age of 7 days (7 d) and 8 weeks (8 w) as well as 2 weeks (TAC 2 w)
after TAC surgery.

L Western blot analysis of co-immunoprecipitation (IP) with GST-TIP30 and eEF1A2-His.

Data information: Data are shown as mean � SEM.
Source data are available online for this figure.
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Figure 4. TIP30 inhibits the interaction of eEF1A1 with its essential co-factor eEF1B2.

A Western blot analysis of GST-pulldown assays with GST or GST-eEF1A1 and purified eEF1B2-His. Purified TIP30-His was added in indicated amounts.
B Western blot analysis of anti-Myc immunoprecipitation (IP) in NRCM co-transduced with Ad.eEF1A1-Myc and either control virus (Ad.con) or Ad.TIP30. Endogenous

eEF1B2 was detected. The IP input for eEF1B2, eEF1A1-myc, and TIP30 is shown below.
C Quantification of eEF1B2 abundance after eEF1A1-myc IP under conditions shown in (B) (N = 3 IP’s/group). *P < 0.05. Two-sided Student’s t-test.
D Microscopy images of NRCM after adenoviral transduction with Ad.TIP30 or control virus (Ad.Con) and stimulation with phenylephrine (PE) and subsequent proximity

ligation assay (PLA). Red: eEF1A1-eEF1B2 interaction; Blue: DAPI (scale bar: 50 lm).
E Quantification of eEF1A1-eEF1B2 interaction in conditions described in (D) (N = 3–4 samples/group). ****P < 0.0001. One-way ANOVA with Sidak’s multiple

comparisons test.
F Microscopy images of adult mouse cardiomyocytes isolated from hearts 3 days (d) after TAC or sham surgery and subsequent PLA. Red: eEF1A1-eEF1B2 interaction;

Blue: DAPI (scale bar: 100 lm). Inserts represent high magnification of the indicated areas.
G Quantification of eEF1A1-eEF1B2 interaction in adult mouse cardiomyocytes isolated from hearts 3 days after TAC or sham surgery and subsequent PLA (N = 4–6

mice/group). *P < 0.05. One-way ANOVA with Sidak’s multiple comparisons test.

Data information: Data are shown as mean � SEM.
Source data are available online for this figure.
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cardiomyocytes decreased binding of eEF1B2 to eEF1A1, which

instead bound TIP30 under these circumstances (Fig 4B and C). In

contrast, TIP30 did not affect tRNA binding by eEF1A1

(Appendix Fig S2). We employed a proximity ligation assay to

assess the interaction of endogenous eEF1A1 and eEF1B2 in

cardiomyocytes in situ. While little interaction was seen in unstimu-

lated cells, pro-hypertrophic stimulation with PE strongly increased

binding between both proteins. Strikingly, overexpression of TIP30

completely inhibited increased binding between eEF1A1 and eEF1B2

during PE stimulation (Fig 4D and E). Accordingly, the eEF1A1-

eEF1B2 interaction was enhanced by 3 days of TAC treatment in

adult cardiomyocytes of WT mice, but was even more exaggerated

in cardiomyocytes from Het mice 3 days after TAC (Fig 4F and G).

Therefore, the interaction between eEF1A1 and its GEF eEF1B2

increased during hypertrophic stimulation (enabling more transla-

tionally active eEF1A1) and this was even more facilitated by

reduced TIP30 levels. In turn, elevated TIP30 levels interfered with

eEF1A-eEF1B2 binding and thus inhibited recycling of GDP-bound

eEF1A to its translationally active GTP-bound form.

A stable ratio of TIP30/eEF1A1 abundance is maintained
in the myocardium during homeostasis and compensated
overload, but is reduced in advanced heart failure and
hypertrophic cardiomyopathy

Because TIP30 exerts an inhibitory role on eEF1A1 during transla-

tional elongation (by interfering with eEF1B2 binding), we analyzed

the abundance of TIP30 in relation to eEF1A1 levels. The TIP30/

eEF1A1 ratio was maintained at 1 in a rather stable manner after

sham surgery as well as 3 days (Fig 5A and B), 2 weeks (Fig 5C

and D), and 6 weeks after TAC (Fig 5E and F) in hearts of WT mice.

While neither TIP30 nor eEF1A1 were significantly regulated 3 days

and 6 weeks after TAC, eEF1A1 levels increased significantly

2 weeks after TAC (versus sham), which was accompanied by a

significant increase in TIP30 levels. The cardiac TIP30/eEF1a1 ratio

naturally dropped below 1 in TIP30 Het mice after sham and TAC

surgery, due to reduced TIP30 levels and virtually unchanged

eEF1A1 abundance (Fig 5G and H). When linking the TIP30/eEF1A1

ratios to the degree of cardiac hypertrophy and function during pres-

sure overload (see Fig 1), one could infer that a ratio around 1

might allow the development of moderate hypertrophy with

compensated heart function, while a ratio < 1 could enable exagger-

ated hypertrophy and cardiac dysfunction, presumably because of

disinhibition of eEF1A1 due to reduced TIP30 levels. By overexpres-

sion of TIP30 via AAV-TIP30, the TIP30/eEF1A1 ratio was increased

(Fig 5I and J), which led to reduced cardiac hypertrophy and

improved heart function after TAC (Fig 2).

To analyze the TIP30/eEF1A1 ratio in human heart failure, we

assessed myocardial mRNA levels of TIP30 and eEF1A1, because

TIP30 protein could not be quantified in human samples due to the

lack of a specific antibody. The TIP30/eEF1A1 ratio was strongly

reduced in human failing hearts (with ischemic or dilated cardiomy-

opathy) as well as in human hearts from patients with hypertrophic

cardiomyopathy (Fig 6A and B, Appendix Table S2). Mice with

muscular dystrophy due to the mdx mutation in the dystrophin gene

serve as model of human cardiomyopathy. Similar as in human

cardiomyopathy, we found a strongly reduced myocardial abun-

dance of TIP30 mRNA and protein and a markedly reduced TIP30/

eEF1A1 ratio in the myocardium of 6-month-old mdx mice (Fig 6C,

Appendix Fig S3A). To test whether elevation of the TIP30/eEF1A1

ratio could improve cardiomyopathy, we administered AAV-TIP30

to mdx mice. AAV-TIP30-treated mdx mice exerted a significantly

reduced left ventricular wall thickness 3 and 9 months after AAV

administration versus AAV-control-treated mice (Fig 6D and E).

Consistent with reduced wall thickness, the AAV-TIP30-treated mdx

mice exerted a significantly lower HW/TL ratio as sign of amelio-

rated cardiac hypertrophy at the age of 9 months (Fig 6F). Cardiac

ejection fraction was unchanged, presumably because beside hyper-

trophy, cell death and fibrosis also contribute to cardiac dysfunction

in mdx mice, but are not addressed by AAV-TIP30 (Yue et al, 2003;

Bostick et al, 2012; Schinkel et al, 2012). Still, AAV-TIP30, but not

AAV-control-treated mice increased cardiac contractility (Ees, end-

systolic elastance, assessed by Millar catheterization) during stimu-

lation with dobutamine (Appendix Fig S3B and C). Although the

association of the TIP30/eEF1A1 ratio with the degree of cardiac

hypertrophy is in line with our hypothesis, it should be emphasized

that a variety of other variables affect the outcome of hypertrophy

(e.g., the presence or absence of additional hypertrophic stimuli, the

genetic background, and age).

TIP30 negatively regulates protein synthesis

Because TIP30 interferes with eEF1A1, we hypothesized that it inhi-

bits peptide chain elongation during protein synthesis. When we

measured protein synthesis by determining incorporation of the

exogenously added aminoacyl-tRNA analogue puromycin into

newly synthesized proteins after 3 h of pro-hypertrophic stimulation

with PE in isolated cardiomyocytes, we found a markedly increased

incorporation of puromycin in cells transduced with Ad.Control,

which was strongly reduced in Ad.TIP30-treated cardiomyocytes

(Fig 7A and B). This confirmed protein synthesis inhibition by

TIP30 overexpression. Polysome profiling from isolated cardiomy-

ocytes showed enhanced polysome formation due to PE stimulation

in Ad.Control-infected cells (Fig EV4A and B). Overexpression of

◀ Figure 5. A stable TIP30/eEF1A1 ratio is maintained in homeostasis and compensated growth conditions.

A–F Western blot analysis for TIP30, eEF1A1, and GAPDH in C57BL/6 WT mice 3 days, N = 4 mice/group (A, B), 2 weeks, N = 4–8 mice/group (C, D), and 6 weeks,
N = 4–8 mice/group (E, F) after TAC or sham surgery and their quantification. KO denotes TIP30 homozygous knock-out.

G, H Western blot for TIP30, eEF1A1, and Actin in TIP30 Het mice 6 after TAC surgery and their quantification (N = 4 mice/group).
I, J Western blot for TIP30, eEF1A1, and Actin 2 weeks after sham or TAC surgery in AAV-Con or AAV-TIP30-treated C57BL/6 WT mice and their quantification

(N = 4 mice/group).

Data information: Data are shown as mean � SEM. A ratio of TIP30 and eEF1A1 expression was calculated for each condition. *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001. Two-sided Student’s t-test.
Source data are available online for this figure.
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TIP30 during PE administration produced a profile characterized by

accumulation of 80S ribosomes and a depletion of polysomes. This

profile is compatible with inhibition of protein synthesis either at a

late step in translation initiation or early in elongation (Schneider-

Poetsch et al, 2010). To decipher this further, we transfected

cardiomyocytes with a luciferase plasmid that reports cap-depen-

dent translation (dependent on functional translational initiation) as

renilla luciferase activity and cap-independent translation (i.e., not

dependent on functional translation initiation) as firefly luciferase

activity (Fig EV4C). In this assay, both renilla and firefly luciferase

activities were similarly induced by PE stimulation in control

cardiomyocytes and were similarly inhibited by TIP30 overexpres-

sion (Fig EV4D and E). This indicated that TIP30 primarily inter-

feres with translational elongation, because inhibition of

translational initiation would have reduced selectively only the

renilla signal. A 2D-Gel-based comparative proteomic analysis

(DIGE) of cardiomyocytes during PE stimulation with and without

TIP30 overexpression did not show selective inhibitory effects of

TIP30 on the abundance of specific proteins (Appendix Table S3),

supporting a role of TIP30 as a general inhibitor of protein synthe-

sis. Furthermore, inhibition of protein synthesis by TIP30 overex-

pression during TAC induced hypertrophy in vivo was confirmed by

assessment of cardiac puromycin incorporation (Fig EV4F and G).

Next, we assessed protein synthesis in mice with reduced TIP30

levels compared to WT mice. Puromycin labeling indicated

enhanced protein synthesis in Het mice, but not KO mice 3 days

after TAC (Fig EV5A). Because cardiac overload puts an increased

demand on the protein folding capacity of the endoplasmic reticu-

lum (ER), we assessed whether the unfolded protein response

(UPR) was initiated due to ER-stress (Arrieta et al, 2018). We found

that the adaptive UPR response genes Hrd1, Xbp1, and Manf were

significantly upregulated in the homozygous TIP30 KO mice after

TAC, while only a trend was visible in Het mice after TAC. Rheb

was upregulated in both genotypes after TAC, but more significantly

in homozygous KO mice (Fig EV5B).

Hence, increased TIP30 levels inhibited cardiomyocyte protein

synthesis, while reduced levels of TIP30 predisposed to increased

myocardial protein synthesis during hypertrophic stimulation. Espe-

cially in homozygous TIP30 KO mice, pathological overload is asso-

ciated with activation of the UPR.

The anti-hypertrophic role of TIP30 depends on eEF1A

To establish a direct link between eEF1A and cardiomyocyte hypertro-

phy, we used narciclasine, which acts as inhibitor of eEF1A (Van

Goietsenoven et al, 2010). Neonatal mouse cardiomyocytes of Het

mice exerted more hypertrophy (measured as cell size) compared to

WT cells during pro-hypertrophic ET-1 stimulation, but this was

completely blunted by narciclasine, suggesting that the enhanced

growth of Het cardiomyocytes depended on functional eEF1A (Fig 7C).

Even more importantly, narciclasine treatment of WT and Het mice

during 2 weeks of pressure overload also blunted increased hypertro-

phy (measured as HW/TL, wall thickness, and cardiomyocyte area) in

Het versus WT mice in vivo (Fig 7D–G). At the same time, narciclasine

markedly improved cardiac function after TAC in Het mice compared

to untreated Het mice (Fig 7H). Myocardial puromycin incorporation

was enhanced in the myocardium of Het versus WT mice after TAC

(again showing increased myocardial protein synthesis), and this effect

was blunted in Het mice receiving narciclasine (Fig 7I).

Finally, we determined whether the effects of TIP30 overexpression

depended on eEF1A1: siRNA-mediated eEF1A1 downregulation

reduced the anti-hypertrophic effects of overexpressed TIP30 in PE-

treated cardiomyocytes (Fig EV5C and D). Similarly, eEF1A inhibition

by narciclasine reduced PE-driven cardiomyocyte hypertrophy and

strongly ameliorated the growth inhibitory effects of TIP30 expression

during PE stimulation (Fig EV5E). Accordingly, while recombinant

◀ Figure 6. The TIP30/eEF1A1 ratio decreases in human failing and hypertrophic cardiomyopathy hearts.

A–C Quantification of Tip30 and eEF1A1 mRNA transcript abundance in human failing hearts, N = 6–8 hearts/group (A), in patients with hypertrophic cardiomyopathy
(HCM; B, N = 4–8 hearts/group) and 6-month-old mdx mice or WT mice, N = 4 mice/group (C). A ratio of Tip30 and eEF1A1 expression was calculated for each
condition. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. Two-sided Student’s t-test.

D Schematic representation of AAV-study design in mdx (MDX) mice.
E Echocardiographic diastolic left ventricular wall thickness in MDX mice at the age of 2 months at baseline, and 1–9 months (mo) after injection of AAV9-Con or

AAV9-TIP30 (TIP; N = 6–7 mice/group). *P < 0.05, **P < 0.01. One-way ANOVA with Sidak’s multiple comparisons test.
F Quantification of HW/TL ratio of 9-month-old MDX mice, N = 5–6 mice/group. *P < 0.05. Two-sided Student’s t-test.

Data information: Data are shown as mean � SEM.

▸Figure 7. TIP30 inhibits protein synthesis in cardiomyocytes.

A Western blot analysis of isolated neonatal rat cardiomyocytes (NRCM) after adenoviral transduction either with control adenovirus (Con) or Ad.TIP30 (TIP30)
followed by stimulation with phenylephrine (PE, for 3 h) and puromycin incorporation (for 30 min).

B Quantification of the Western blot shown in (A) (N = 3 samples/group). *P < 0.05, **P < 0.01. One-way ANOVA with Sidak’s multiple comparisons test.
C Quantification of cell surface area of isolated neonatal mouse cardiomyocyte of Tip30 Het and WT mice treated with endothelin-1 (ET-1) and narciclasine (Narci)

or without stimulation as indicated (N = 6 samples/group). *P < 0.05, ***P < 0.001. One-way ANOVA with Sidak’s multiple comparisons test.
D Schematic representation of narciclasine study design.
E–H Quantification of HW/TL ratio, N = 6–10 mice/group (E), echocardiographic wall thickness, N = 6–10 mice/group (F), cardiomyocyte area, N = 5 mice/group (G), and

fractional area change (FAC, H, N = 6–10 mice/group) in Tip30 Het or WT mice 2 weeks after TAC. Animals were treated with narciclasine daily for 14 days after
TAC as indicated. *P < 0.05, **P < 0.01, ***P < 0.001. One-way ANOVA with Sidak’s multiple comparisons test.

I Western blot analysis of puromycin incorporation in hearts of Tip30 Het and WT mice 3 days after TAC or sham surgery and daily narciclasine (Narci) injection and their
quantification (N = 2–4mice/group). Puromycin was injected 3 h prior to sacrifice. *P < 0.05, **P < 0.01. One-way ANOVA with Sidak’s multiple comparisons test.

Data information: Data are shown as mean � SEM.
Source data are available online for this figure.
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full-length TIP30 blocked translation of a renilla-reporter mRNA in

rabbit reticulocyte lysate in vitro, a mutant TIP30 (lacking the N-term-

inal 52 amino acids) devoid of eEF1A1 binding capability, did not

significantly inhibit translation in this system (Fig EV5F).

Discussion

In this study, we found that TIP30 restricts protein synthesis and

hypertrophy in cardiomyocytes at the level of translational elongation
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by binding to eEF1A1, inhibiting the interaction with its GEF eEF1B2,

and thereby reducing the generation of active GTP-bound eEF1A1.

While according to our model a balanced abundance of TIP30 and its

target eEF1A1 enables compensated cardiac growth during pathologi-

cal overload, a reduced myocardial TIP30/eEF1A1 ratio like in the late

stage of human heart failure promotes exaggerated cardiomyocyte

growth and ventricular dysfunction, which could arise from insuffi-

cient concomitant myocardial capillary growth. Indeed, heterozygous

TIP30 knock-out mice with similarly reduced TIP30 protein levels as

we observed in human heart failure, developed enhanced hypertro-

phy, myocardial capillary rarefaction, and systolic ventricular

dysfunction. Overexpression of TIP30 in a cardiomyopathy mouse

model with diminished cardiac TIP30 levels, in turn, ameliorated

pathological hypertrophy and improved contractility. Besides in heart

failure, downregulation of TIP30 was reported previously in aggres-

sive forms of cancer (Ito et al, 2003; Zhao et al, 2007; Li et al, 2009;

Tong et al, 2009). Not unlike in the heart, reduced TIP30 levels are

associated with accelerated growth, cell transformation, and

enhanced metastasis formation in human tumors (Ito et al, 2003;

Zhao et al, 2007; Li et al, 2009; Tong et al, 2009).

We were initially surprised by the fact that heterozygous Tip30

knock-out mice exerted a stronger cardiac phenotype compared to

homozygous KO mice. Quite similarly, however, Het mice also

develop more tumors than homozygous KO mice, indicating that

TIP30 is haploinsufficient for tumor suppression and for the

suppression of heart growth, i.e., that even a reduction of TIP30

levels by about 50% triggers disease (Ito et al, 2003). We hypothe-

size that the complete lack of TIP30 in KO mice induces compen-

satory mechanisms early during development, which partially

ameliorate the consequences of the absence of TIP30. One such

mechanism could involve the stronger induction of the UPR as

adaptive ER response in homozygous KO mice, which might in part

improve heart function during pathological stress by restoring

protein homeostasis (Arrieta et al, 2018; Blackwood et al, 2019;

Wang et al, 2019). It will be interesting to further decipher the

nature of these compensatory mechanisms in future studies,

because they might inherit therapeutic potential for hypertrophic

heart disease.

Protein synthesis is the main driver of cellular growth, and

when cells reach a certain size, mitosis is initiated (Fenton & Gout,

2011). Since adult cardiomyocytes exit cell cycle shortly after birth,

hypertrophy is the natural mode of growth in these cells (Heineke

& Molkentin, 2006; Hill & Olson, 2008). Indeed, increased protein

synthesis has been found to underlie hypertrophic growth during

pressure overload in different species (Nagai et al, 1988; Imamura

et al, 1994; Nagatomo et al, 1999). Cardiac mechanical overload

triggers enhanced mRNA translation within the first days after it

has emerged (Ivester et al, 1995). Exactly within that time frame

of rapid cardiac growth (in our study at day 3 after surgery),

reduced TIP30 levels in Tip30 Het mice led to increased eEF1B2/

eEF1A1 association and protein synthesis in response to TAC, indi-

cating that it acts to prevent an overshooting increase in transla-

tion and cell growth under these circumstances. TIP30

downregulation or overexpression did not affect cardiomyocyte or

cardiac growth without pro-hypertrophic stimulation (e.g., under

sham conditions) when short time points were analyzed. We

propose that under these conditions, TIP30 only inhibits the low

levels of homeostatic protein synthesis that are present in

cardiomyocytes not actively growing. Consequently, the effects of

TIP30 are not immediately visible, but become important over

longer time periods, such as in Tip30 Het mice, which exert

increased heart growth at 7 months of age.

How does TIP30 regulate translation? Unlike, for example, in

lung adenocarcinoma cells, where TIP30 directly influences intra-

cellular signaling, this was not apparent in cardiomyocytes (Zhang

et al, 2011a; Li et al, 2013). We rather found that TIP30 associates

with the elongation factor eEF1A. Our results indicate that TIP30

binds eEF1A1 at its middle domain, where also aminoacyl-tRNAs

and its GEF eEF1B2 interact (Sasikumar et al, 2012). While tRNA

binding occurred unabated by TIP30, eEF1B2 binding to eEF1A1

was blocked by increased and enhanced by reduced TIP30 concen-

trations. Since the eEF1B2/eEF1A1 interaction, which was

strengthened during cardiomyocyte hypertrophy, is crucial for the

propagation of translation (Pittman et al, 2009), abrogation of this

interaction by TIP30 will stall translational elongation. The regula-

tion of translation at the level of the interaction between eEF1A1

and eEF1B2—like we show here for TIP30—has been previously

demonstrated as the result of eEF1B2 phosphorylation by the cell

cycle-dependent kinase (CDK)1 leading to reduced interaction with

eEF1A1 and downregulation of translation during mitosis (Sivan

et al, 2011; Sasikumar et al, 2012). Reduced activation of transla-

tion due to decreased eEF1A1 activity leads to diminished cell

proliferation or cell growth in different cell types (Kim et al, 2009;

Lin et al, 2010; Belyi et al, 2012). Remarkably, TIP30 appears to

act on protein synthesis independent of mTORC1, which was even

de-activated in a counter-regulatory manner in TIP30-deficient

mice.

We found in this study that TIP30 interacts with both isoforms of

eEF1A (eEF1A1 and eEF1A2), which are 92% identical at the amino

acid levels and which are thought to fulfill similar functions in the

regulation of translational elongation (Abbas et al, 2015). We there-

fore propose that TIP30 acts on both isoforms in a similar manner,

although in this study we primarily characterized its effects on

eEF1A1. Notably, although eEF1A1 became down- and eEF1A2

upregulated in the myocardium after birth as previously described

(Chambers et al, 1998), eEF1A1 was strongly re-induced in response

to pressure overload. Thus, like in certain forms of cancers, the

heart expresses both eEF1A isoforms during overload (Abbas et al,

2015). Together, we suggest a new paradigm, whereby cardiomy-

ocyte hypertrophy can be targeted at the level of translational

elongation through interference with eEF1A, for example, via over-

expression of TIP30 or through substances like narciclasine. Indeed,

narciclasine reduced hypertrophy in wild-type rat cardiomyocytes

and Het mouse cardiomyocytes in vitro as well as in Het mice

in vivo, although an effect on protein synthesis and heart growth in

wild-type mice in vivo was not observed here, likely due to insuffi-

cient dosing. Especially, since eEF1A is being investigated as novel

anti-cancer target (Abbas et al, 2015), some of the findings from

these studies might be transferable toward the treatment of heart

failure in the future.

Materials and Methods

All mice, reagents, antibodies, plasmids, oligonucleotides, and kits

used in this study are summarized in Appendix Table S4.
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Human heart samples

Control tissue was from victims of traffic accidents or from healthy

heart organ donors, when the organ was ineligible for transplanta-

tion. Samples from failing hearts were derived from patients with

ischemic (n = 2) or dilated cardiomyopathy (n = 7) undergoing

cardiac transplantation (Haq et al, 2001). Samples from patients

with hypertrophic cardiomyopathy (Appendix Table S2) were

acquired during myectomy or cardiac transplantation. Their use was

permitted by the Massachusetts General Hospital Institutional

Review Board (USA), and by the Ethical Committee of the Hannover

Medical School, Germany (Az. Z 14.06-A 1871-30724/98 and 2276-

2014). Informed consent was obtained from all subjects. The experi-

ments conformed to the principles set out in the WMA Declaration

of Helsinki and the Department of Health and Human Services

Belmont Report.

Mouse models

Tip30 knock-out mice were in a FVBN background and have been

described previously (Ito et al, 2003). Breeding pairs were a gener-

ous gift by H. Xiao (Department of Physiology, Michigan State

University, USA). Male Tip30 WT, Het, and KO mice at 6–8 weeks

of age were used for experiments. The mdx mice were previously

described (Schinkel et al, 2012). AAV9-treated mice used in this

study were male C57BL/6N wild-type mice (Charles River Laborato-

ries) as well as mdx mice and Tip30 Het mice at the age of 6 weeks.

The animals had free access to water and a standard diet and were

maintained on a 12-h light and dark cycle at a room temperature of

22 � 2°C. For rescue experiments after TAC, narciclasine (#sc-

361271, Santa Cruz) was injected into Tip30 Het mice and WT litter-

mate controls daily for 14 days (1 lg/g BW i.p.). Premature death

was a criterion for exclusion from an ongoing experiment. Death

rates were not significantly different between experimental TAC

groups in this study. All procedures involving the use and care of

animals were performed according to the Guide for the Care and

Use of Laboratory Animals published by the National Research

Council (NIH Publication No. 85-23, revised 1996) and the German

animal protection code. Approval was granted by the local state

authorities (3.9-42502-04-10/0269 and 33.12-42502-04-15/1871).

Aortic banding

Transverse aortic constriction (TAC) or sham surgery was

performed in 8-week-old mice by subjecting the aorta to a defined

25 gauge constriction as described (Zwadlo et al, 2015).

Transthoracic echocardiography and cardiac catheterization

For echocardiography, mice were anaesthetized with 0.5–1.0%

isoflurane and placed on a heating pad to maintain body tempera-

ture. Non-invasive, echocardiographic parameters were measured

with a linear 30 MHz transducer (Vevo 770, Visualsonics). LV end-

diastolic area (LVEDA) and end-systolic area (LVESA) were

recorded. Fractional area change was calculated as [(LVEDA �
LVESA)/LVEDA] × 100. Intraventricular pressures in mice were

assessed in anesthetized (2% isoflurane) and artificially ventilated

(MiniVent respirator, Harvard Apparatus) mice using a 1F microtip

pressure–volume catheter (PVR 1045, Millar Instruments) coupled

with a Powerlab/4SP acquisition system (ADInstruments Ltd), as

described (Zwadlo et al, 2015). Cardiac parameters were recorded

using LabChart (ADInstruments Ltd.) to calculate end-systolic and

end-diastolic pressure and heart rate. The hemodynamic measure-

ments in mdx mice were made in closed-chest, spontaneously

breathing mice. Mice were anaesthetized by intraperitoneal injection

of medetomidine (0.5 lg/g body weight), fentanyl (0.05 lg/g body

weight), and midazolam (5 lg/g body weight). A 1.2 Fr catheter

(Model FT111B Scisense Inc., London, ON, Canada) was inserted

into the left ventricle of the mouse through the carotid artery to

simultaneously measure pressure and volumes. Left ventricular

volumes were extrapolated from admittance magnitude and admit-

tance phase in real time using the ADVantage PV system (Scisense

Inc.). Pressure and volume data were recorded using a Scisense

404—16 Bit Four Channel Recorder with LabScribe2 Software

(Scisense Inc.). Transient inferior vena cava compressions were

applied to reduce preload and determine end-systolic elastance

(Ees). After baseline measurement, intraperitoneal injection of dobu-

tamine with a dose of 20 ng/g body weight was performed and

hemodynamic measurements were repeated 5 min after injection.

Doppler velocity measurements

Following echocardiography, the flow velocity signals of the right

carotid artery (RCA) and the left aortic artery (LCA) were measured

by placing the Doppler-probe [20 MHz probe of INDUS instruments

(version 1.7)] on the right or left side of the cervical midline, respec-

tively (Hartley et al, 2011).

AAV9-mediated overexpression of TIP30

The open reading frame of the Tip30 gene was cloned into the AAV-

vector genome plasmid pds-CMVenh-MLC260 or pdsTnT-Cre, respec-

tively. For production of AAV9-TIP30 pseudotyped vectors, these plas-

mids were used for co-transfection of HEK293T cells together with

pDP9rs, a derivate of pDP2rs encoding the AAV9 cap sequence, the

AAV2 rep gene, and adenoviral helper sequences. For generation of the

control vector AAV9-rLuc (AAV9-control), a vector genome plasmid

with Renilla luciferase was used. AAV vectors were produced, purified,

and titrated using standard procedures (Werfel et al, 2014). AAV9

vectors were administered into the tail vein of 6-week-old male C57BL/

6N mice (5 × 1011 vg/ml in PBS) or Tip30 Het mice (2 × 1011 vg/ml in

PBS) 2 weeks prior to TAC and at the age of 2 months in mdx mice.

Measurement of translation rates in vivo

To assess global translation rates in mice, the incorporation of puro-

mycin in actively translated proteins of the heart was measured.

Puromycin (Sigma) was injected intraperitoneally (25 mg/kg body

weight) into mice 3 days after TAC 3 h prior to sacrifice.

Primary cardiomyocytes cultures

Neonatal cardiomyocytes were isolated from 1- to 3-day-old

Sprague-Dawley rats by Percoll density gradient centrifugation as

previously described (Zwadlo et al, 2015). Isolated neonatal rat

cardiomyocytes (NRCM) were stimulated with either phenylephrine
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(20 lM), fetal bovine serum (2%), or endothelin-1 (100 nM) for

48 h to induce hypertrophy. To measure incorporation of puro-

mycin into actively translated proteins 24 h after adenoviral trans-

duction and 3 h of PE stimulation, puromycin (0.1 lg/ml, Sigma)

was added into NRCM cell culture for 30 min prior to collecting cell

lysates for Western blot analyses. To inhibit eEF1A function, NRCM

were incubated with the specific inhibitor narciclasine (100 nm,

Santa Cruz) for 24 h as indicated.

To generate Ad.TIP30, rat Tip30 ORF (NM_001106263.2) was

cloned into pShuttleCMV. Virus production was carried out with the

AdEasy Adenoviral Vector Systems Kit from Agilent following the

protocol. NRCM were transduced the day after isolation. If needed,

cells were transfected with siRNA directed against eEF1A1

(SASI_Rn02_00269532, Sigma-Aldrich) or siControl (AM4611,

Ambion) using Lipofectamine 2000 (Thermo Fisher Scientific)

according to the manufacturer’s protocol. Adult cardiac myocytes

(ARCMs) were isolated according to AfCS Procedure Protocol ID

PP00000125 (http://www.signaling-gateway.org/data/ProtocolLinks.

html). Cell size of NRCM and ARCM was measured of at least 100

myocytes per culture dish or mouse using a Zeiss AxioObserver.Z1

Inverted Microscope (Zeiss) and ImageJ (http://rsb.info.nih.gov/ij/).

For analysis of protein/DNA ratio, NRCM were pelleted, resuspended

in lysis buffer (10 mM Tris, 150 mM NaCl, 4% glycerol, 0.5 mM

sodium metabisulfite, 1% Triton X, 0.1% sodium deoxycholate,

0.05% SDS, pH 7.5), and split into aliquots for DNA and protein

measurement.

Protein was measured using Micro BCA Protein Assay Kit

(Thermo Fisher Scientific) according to the manufacturer’s protocol.

DNA content was measured using Hoechst 33258 reagent (Sigma-

Aldrich) with calf thymus DNA as a standard (Life Technologies). In

brief, NRCM suspensions were added to buffer containing 10 mM

Tris, 2 M NaCl, 1 mM EDTA, pH 7.4, and 100 ng/ml Hoechst 33258

reagent. Fluorescence was measured using a Modulus Luminometer

(Turner BioSystems) at excitation and emission wavelengths of 365

and 460 nm, respectively.

Measurements of cell contractility and sarcomere length in
isolated adult mouse myocytes

Following isolation, ventricular myocytes were placed on 3-cm dishes

(#P35G-1.5-10-C, MatTek) coated with laminin (10 mg/cm2) and

were washed 3 h later with MEM medium. The isolated myocytes

were then transferred to the recording chamber of the IonOptix

System. Sarcomere shortening was assessed upon field stimulation

(1, 2 and 4 Hz) using a video-based sarcomere length detection

system (IonOptix Corporation) at 37°C. The recordings were subse-

quently analyzed with the Ion Wizard software (IonOptix).

Quantitative real-time PCR

Total RNA was extracted using TriFast (Peqlab). cDNA was synthe-

sized from 1 lg RNA using Maxima H Minus First Strand cDNA

Synthesis Kit (Thermo Fisher Scientific), and quantitative real-time

PCR was performed using SYBR Green (Thermo Fisher Scientific) on

a MX4000 multiplex QPCR system (Stratagene). Transcript quanti-

ties were normalized to GAPDH mRNA with three exceptions where

ribosomal protein L7 for normalization of a- and ß-MHC expression

(Fig 1H and I) and of Acta1 expression (Fig 2D) was used.

Immunoblot analysis

For immunoblot (Western blot) analysis, heart samples and isolated

cardiac myocytes were lysed in ice-cold lysis buffer (10 mM Tris,

150 mM NaCl, 4% Glycerol, 0.5 mM sodium metabisulfite, 1%

Triton X, 0.1% sodium deoxycholate, 0.05% SDS, pH 7.5). Equal

amounts of total protein were separated on SDS–polyacrylamide gel

electrophoresis under reducing conditions. Densitometry of protein

bands was performed using Quantity One software (Bio-Rad).

Immunostaining

For visualization of specific protein localization in NRCM, cells were

stained for anti-TIP30 (#ab177961, Abcam, 1:100) followed by Anti-

Rabbit IgG Alexa Fluor� 488 secondary antibody (#4412, NEB,

1:250) and mouse monoclonal anti-eEF1A1 (#sc-21758, Sigma,

1:100) followed by Anti-Mouse IgG Alexa Fluor� 555 secondary

antibody (#4409, NEB, 1:250). A goat polyclonal anti-PDGFRa
(#AF1062, R&D Systems, 1:100) antibody was used to label cardiac

fibroblasts. For visualization of specific protein localization in heart

tissue sections after AAV9-TropT-TIP30 transduction, these were

stained for anti-TIP30 (#ab71752, Abcam, 1:50) followed by Anti-

Rabbit IgG Alexa Fluor� 555 secondary antibody (#4409, Cell Signal-

ing, 1:200) together with FITC-conjugated WGA (#L4895, Sigma-

Aldrich). Nuclear staining was performed with VECTASHIELD

Mounting Medium (Vector Laboratories) with DAPI. Representative

images were acquired using confocal microscopy. Confocal imaging

was performed with a TCS SP2 AOBS scan head and an inverted

Leica DM IRB microscope equipped with a 63× oil immersion objec-

tive. Image analysis was performed using ImageJ.

Co-immunoprecipitation

After crosslinking with 0.5% PFA/PBS for 5 min and quenching two

times with 1.25 M glycine/PBS, cells were lysed in binding buffer

(20 mM HEPES pH 7.6, 75 mM NaCl, 0.1% NP-40) supplemented

with protease inhibitors (Complete Protease Inhibitor Cocktail,

Roche). Lysates were incubated with indicated antibodies or IgG

controls overnight at 4°C, incubated with Protein A/G Plus Agarose

(Santa Cruz Biotechnologies), washed two times with binding

buffer, and resolved using Western blot analysis.

Proximity ligation assay

Proximity ligation assays were performed in isolated neonatal rat or

adult mouse cardiomyocytes using the Duolink In Situ Kit (Olink

Bioscience) according to the manufacturer’s instructions. Cells were

either stained for anti-TIP30 (#ab177961, Abcam, 1:100) and anti-

eEF1A1 (#sc-21758, Santa Cruz, 1:100) or anti-eEF1A1 (#ab118703,

Abcam, 1:100) and anti-eEF1B2 (#ab77043, Abcam, 1:100). Control

cells were stained for anti-TIP30 (#ab177961, Abcam, 1:100) and

anti-Myc (#2276, Cell Signaling, 1:100).

Electron microscopy

Whole hearts of TIP30 WT and Het mice were perfused and fixed in

150mM HEPES buffer, pH 7.35, containing 1.5% paraformaldehyde

and 1.5% glutaraldehyde over night. 2-mm cubes of heart tissue
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were then washed in 0.15 M HEPES buffer (2 × 6 min) and 0.1 M

cacodylate buffer, pH 7.35 (4 × 6 min), postfixed in 1% osmium

tetroxide in cacodylate buffer (2 h), followed by washing steps

(4 × 5 min cacodylate buffer, 2 × 5 min water) and 4% aqueous

uranyl acetate (over night at 4°C). The heart tissue was then washed

in water (2 × 5 min), dehydrated in acetone, and embedded in

Epon. 50-nm sections were poststained with 4% uranyl acetate and

lead citrate. Electron microscopic examinations were performed by

a blinded observer with a FEI Morgagni 268 transmission electron

microscope (FEI, Eindhoven, Netherlands) operated at 80 kV using a

Veleta CCD camera (Olympus Soft Imaging Solutions).

Tissue sampling

Excised hearts were arrested in diastole and either embedded in

OCT (Tissue-Tek, Sakura) or snap-frozen in liquid nitrogen for

further analysis. Hearts in OCT were sectioned at 12 lm thickness

and stained with Sirius red according to general protocols to detect

collagen fibers. For immunostaining slides were sectioned at 7 lm
thickness.

Luciferase reporter assay

Cell lysates were subjected to a Renilla Luciferase Assay System

(Promega) according to the manufacturer’s protocol. In brief, 1 day

after adenoviral transduction NRCM were transfected with a Renilla

luciferase plasmid using GeneTrans II Transfection reagent

(MoBiTec). After 48 h, cells were either subjected to a luciferase

reporter assay or RNA was isolated for subsequent quantitative real-

time PCR. Luciferase activity was detected by using a Modulus

Luminometer (Turner BioSystems) and normalized to total protein

concentration.

Cell death assays

To analyze cell death rates, NRCM were transduced with Ad.Control

or Ad.TIP30 adenovirus, stimulated with PE for 48 h, washed with

1× PBS, and incubated with 7-AAD (Annexin V: PE Apoptosis Detec-

tion Kit I, BD Biosciences) 1:400 in 1× PBS for 15 min. After fixation

with 100% ethanol, cells were mounted with VECTASHIELD Mount-

ing Medium (Vector Laboratories) with DAPI. Tissue staining of

cleaved caspase-3 (CC3), the activated form of caspase-3, was done

with rabbit polyclonal anti-Cleaved Caspase-3 (Asp175, #9661, Cell

Signaling, 1:100) using standard procedures.

In vitro translation

In vitro translation reactions were performed in Flexi rabbit reticulo-

cyte lysate (Promega) using 50 ng Renilla mRNA as template follow-

ing the manufacturer’s protocol. Purified His-tagged proteins and

BSA as control were added in the indicated amounts. The result of

translation was analyzed with the Renilla luciferase assay supplied

with the reticulocyte lysate.

Plasmids

The open reading frames of rat Tip30 (NM_001106263.2), rat

eEF1A1 (BC128723.1), and rat eEF1B2 (NM_001108799.2) were

cloned into the pcDNA3.1/V5-His A vector (Life Technologies) to

generate His6-Tag fusion proteins and into the pGEX-4T1 vector (GE

Healthcare) to generate GST-Tag fusion proteins. Large deletion

mutants of TIP30 as well as eEF1A1 were generated by cloning

single fragments of the open reading frames into the indicated

vectors. The open reading frames of rat Ncl (coding for nucleolin;

BC085751.1), rat Rps3a (coding for 40S ribosomal protein S3a;

BC058483.1), and human hnRNPA2/B1 (XP_003689535.1) were

cloned into pShuttleCMV (Agilent) with a Myc-tag epitope inserted

at the C-terminus by PCR.

Cell culture and transfection of cells

HEK293 and COS-1 cell lines were grown in Dulbecco’s modified

Eagle medium (DMEM) 4.5 g/l glucose w/o glutamine (Pan-

Biotech) supplemented with 10% (v/v) of FBS (ATCC) and 1%

(v/v) of Penicillin/Streptomycin solution (Pan-Biotech) at a temper-

ature of 37°C in the presence of 5% of CO2. Cells were plated in 6-

well plates and transfected with Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s protocol with 1 lg of plasmid DNA.

Cells were incubated for 48 h to ensure protein expression.

Protein purification

His6-tagged proteins were expressed in indicated cell lines and puri-

fied with Ni-NTA Spin columns (Qiagen) under native conditions

according to manufacturer’s protocol. Purified proteins were imme-

diately subjected to Zeba Spin desalting columns (7K MWCO,

Thermo Fisher Scientific) to exchange imidazole-containing elution

buffer into PBS.

GST-pulldown assay

GST-tagged proteins were expressed in Escherichia coli BL21 (DE3).

The purified proteins were bound to glutathione agarose beads

(Thermo Fischer Scientific) and incubated for 2 h at 4°C with whole

cell lysates or purified proteins as indicated. After washing two

times with PBS, bound proteins were eluted by heating the

glutathione beads at 95°C for 5min in SDS loading buffer and

detected by Western blot analysis.

Identification of protein interaction partners after
GST-pulldown assay

A GST-pulldown assay was performed with GST or GST-TIP30 from

neonatal rat cardiomyocyte lysate. Bound proteins were loaded on a

SDS–PAGE under reducing conditions. Protein bands that were

apparent only in the GST-TIP30 pulldown lane were excised and

identified by mass spectrometry.

DIGE (difference in-gel electrophoresis) analysis

NRCM were infected with Ad.Control or Ad.TIP30 and were treated

with PE (20 lM) on the following day for 24 h. The cells were

harvested in DIGE lysis buffer (8 M urea, 30 mM Tris, 4% (w/v)

CHAPS) with protease inhibitors (Complete Protease Inhibitor Cock-

tail, Roche). After the determination of protein concentrations, fluo-

rescent dye labeling reactions (GE Healthcare) were conducted and
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20 lg of protein was subjected to two-dimensional gel electrophore-

sis. Three gels per condition were analyzed. Protein spots with more

than 1.2-fold significant (P < 0.05) difference in abundance between

the two conditions were identified by mass spectrometry.

tRNA binding assay

HEK cells were lysed 48 h after DNA transfection with pcDNA3.1/

V5-eEF1A1-His in lysis buffer (50 mM NaH2PO4, 300 mM NaCl,

10 mM imidazole, 1% Tween). The cell lysate was incubated with

Ni-NTA Magnetic Agarose Beads (#36113, Qiagen) according to the

manufacturer’s protocol. Beads with bound eEF1A1-His were then

washed two times with GTP Binding Buffer (25 mM Tris–HCl pH

7.4, 10% glycerol, 75 mM NaCl, 1 mM Na3VO4, 5 mM NaF, 5 mM

b-glycerophosphate, 0.025% Triton X) to remove endogenous

bound GDP from eEF1A1. This was followed by incubation with

isolated recombinant TIP30-His or BSA as control in indicated

concentrations in GTP Binding Buffer. After 30 min, GTP (#A1803,

AppliChem) was added to a final concentration of 17 mM and incu-

bated again for 30 min. Finally, 0.5 ll FluoroTectTM GreenLys tRNA

(#L5001, Promega) was added. Beads were washed two times with

GTP Binding Buffer after 30 min of incubation, and bound eEF1A1-

His was eluted with Elution Buffer (50 mM NaH2PO4, 300 mM

NaCl, 500 mM imidazole). Fluorescence of eEF1A1 bound tRNA

was measured using a Modulus Luminometer (Turner BioSystems).

Representative images

Images of histological sections, immunofluorescence pictures,

Western blots, and GST-pulldown assays or immunoprecipitations

are representative images, and the respective experiments were

successfully repeated at least two times.

Statistics

Statistical analysis was performed using Prism 6 (GraphPad Soft-

ware). Data are shown as mean � standard error of the mean

(SEM). All experiments were carried out in at least three biological

replicates. No statistical method was used to predetermine sample

size. Sample size was chosen as a result of previous experience

regarding data variability in similar models and experimental set-

up. The experiments were not randomized. The investigators were

blinded for mouse genotype and treatment during surgeries,

echocardiography, cardiac catheterization, organ weight determina-

tion, and all histological and immunofluorescence quantifications.

The variance was comparable between groups, and normality was

assumed. Multiple groups were compared by one-way repeated-

measures analysis of variance (ANOVA) followed by Sidak’s multi-

ple comparisons test or by unpaired, two-sided Student’s t-test when

comparing two experimental groups. Differences were considered

significant when P < 0.05. Exact P-values and n-number for each

graph are shown in Appendix Tables S5 and S6.

Expanded View for this article is available online.
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The paper explained

Problem
The mammalian adult heart expands in size mainly as a result of
cardiac muscle cell growth due to enhanced protein synthesis. During
common human diseases such as chronic arterial hypertension, aortic
valve stenosis, but also inherited cardiomyopathies, exaggerated heart
growth (referred to as hypertrophy) is associated with the development
of heart failure and poor prognosis. Cardiac hypertrophy, however, is
not sufficiently addressed by current treatment strategies. We hypothe-
sized that endogenous negative regulators of protein synthesis exist in
the heart to prevent aggravated hypertrophy and that these regulators
could potentially be used for therapeutic purposes in the future.

Results
We found that the tumor suppressor gene TIP30 counteracts cardiomy-
ocyte growth by binding to the elongation factor 1A (eEF1A). eEF1A is
known to promote translation by delivering amino acids to the ribo-
somes. Our findings suggested that TIP30 through binding to eEF1A
reduces protein synthesis by interfering with the interaction between
eEF1A and its guanine nucleotide exchange factor eEF1B2, which keeps
eEF1A in its active state. Due to this mechanism, even only a reduction
of TIP30 by around 50% in heterozygous TIP30 knock-out mice led to
increased cardiac protein synthesis, hypertrophy, and cardiac dysfunc-
tion in response to pathological pressure overload. TIP30 overexpression,
in turn, improved heart function under these circumstances and inhib-
ited myocardial protein synthesis and hypertrophy.
Importantly, TIP30 levels in relation to its target eEF1A are mark-

edly downregulated in failing and cardiomyopathic human hearts,
which according to our findings leave eEF1A active and thereby
promotes cardiac hypertrophy and failure. Indeed, the phenotype of
heterozygous TIP30 knock-out mice during pressure overload could be
significantly ameliorated by inhibiting eEF1A with the substance
narciclasine. On the other hand, overexpression of TIP30 in cardiomy-
opathic mice with endogenous TIP30 downregulation potently
reduced hypertrophic heart growth over time.

Impact
We suggest that exaggerated translational elongation is maladaptive
during pathological overload. In this regard, reduced TIP30 levels and
more active eEF1A in failing hearts might be an interesting new ther-
apeutic target, which could be addressed, for example, by TIP30 over-
expression or eEF1A inhibition through substances like narciclasine.

18 of 20 EMBO Molecular Medicine 11: e10018 | 2019 ª 2019 The Authors

EMBO Molecular Medicine Andrea Grund et al

https://doi.org/10.15252/emmm.201810018


and analyzed data. TK, AP, and CdR provided human myocardial samples. MV

and SD provided important advice, experimental protocols, analyzed data, and

critically revised the article. AJ, RB, and OJM provided crucial reagent,

performed experiments, and analyzed data. XY and MM performed experi-

ments and analyzed data. AP performed experiments and analyzed data. HX

provided the Tip30 knock-out mice, gave important advice for the project, and

revised the article. HAK and JB supported the study and provided infrastruc-

ture. MG, TT, HAK, KCW, OJM, and JB critically revised the article. AGr and JHei

wrote the paper. JHei supervised the study.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Abbas W, Kumar A, Herbein G (2015) The eEF1A proteins: at the crossroads of

oncogenesis, apoptosis, and viral infections. Front Oncol 5: 75

Arrieta A, Blackwood EA, Glembotski CC (2018) ER protein quality control and

the unfolded protein response in the heart. Curr Top Microbiol Immunol

414: 193 – 213

Belyi Y, Tartakovskaya D, Tais A, Fitzke E, Tzivelekidis T, Jank T, Rospert S,

Aktories K (2012) Elongation factor 1A is the target of growth inhibition in

yeast caused by Legionella pneumophila glucosyltransferase Lgt1. J Biol

Chem 287: 26029 – 26037

Blackwood EA, Hofmann C, Santo Domingo M, Bilal AS, Sarakki A, Stauffer W,

Arrieta A, Thuerauf DJ, Kolkhorst FW, Muller OJ et al (2019) ATF6 regulates

cardiac hypertrophy by transcriptional induction of the mTORC1 activator,

Rheb. Circ Res 124: 79 – 93

Bostick B, Shin JH, Yue Y, Wasala NB, Lai Y, Duan D (2012) AAV micro-dystrophin

gene therapy alleviates stress-induced cardiac death but not myocardial

fibrosis in > 21-m-old mdx mice, an end-stage model of Duchenne

muscular dystrophy cardiomyopathy. J Mol Cell Cardiol 53: 217 – 222

Chambers DM, Peters J, Abbott CM (1998) The lethal mutation of the mouse

wasted (wst) is a deletion that abolishes expression of a tissue-specific

isoform of translation elongation factor 1alpha, encoded by the Eef1a2

gene. Proc Natl Acad Sci USA 95: 4463 – 4468

Chen F, Li A, Gao S, Hollern D, Williams M, Liu F, VanSickle EA, Andrechek E,

Zhang C, Yang C et al (2014) Tip30 controls differentiation of murine

mammary luminal progenitor to estrogen receptor-positive luminal cell

through regulating FoxA1 expression. Cell Death Dis 5: e1242

Ding Y, Sun X, Huang W, Hoage T, Redfield M, Kushwaha S, Sivasubbu S, Lin

X, Ekker S, Xu X (2011) Haploinsufficiency of target of rapamycin

attenuates cardiomyopathies in adult zebrafish. Circ Res 109: 658 – 669

El Omari K, Bird LE, Nichols CE, Ren J, Stammers DK (2005) Crystal structure

of CC3 (TIP30): implications for its role as a tumor suppressor. J Biol Chem

280: 18229 – 18236

Fenton TR, Gout IT (2011) Functions and regulation of the 70 kDa ribosomal

S6 kinases. Int J Biochem Cell Biol 43: 47 – 59

Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette

L, Michael A, Hajjar R, Force T et al (2001) Differential activation of signal

transduction pathways in human hearts with hypertrophy versus

advanced heart failure. Circulation 103: 670 – 677

Hartley CJ, Reddy AK, Madala S, Entman ML, Michael LH, Taffet GE (2011)

Doppler velocity measurements from large and small arteries of mice. Am

J Physiol Heart Circ Physiol 301: H269 –H278

Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP,

Klovekorn WP, Schaper J (2003) Progression from compensated

hypertrophy to failure in the pressure-overloaded human heart: structural

deterioration and compensatory mechanisms. Circulation 107: 984 – 991

Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by

intracellular signalling pathways. Nat Rev Mol Cell Biol 7: 589 – 600

Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, Klevitsky R,

Vaikunth S, Duncan SA, Aronow BJ et al (2007) Cardiomyocyte GATA4

functions as a stress-responsive regulator of angiogenesis in the murine

heart. J Clin Invest 117: 3198 – 3210

Heineke J (2012) Wag the dog: how endothelial cells regulate cardiomyocyte

growth. Arterioscler Thromb Vasc Biol 32: 545 – 547

Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358: 1370 – 1380

Imamura T, McDermott PJ, Kent RL, Nagatsu M, Cooper IV G, Carabello BA

(1994) Acute changes in myosin heavy chain synthesis rate in pressure

versus volume overload. Circ Res 75: 418 – 425

Ito M, Jiang C, Krumm K, Zhang X, Pecha J, Zhao J, Guo Y, Roeder RG, Xiao H

(2003) TIP30 deficiency increases susceptibility to tumorigenesis. Cancer

Res 63: 8763 – 8767

Ivester CT, Tuxworth WJ, Cooper IV G, McDermott PJ (1995) Contraction

accelerates myosin heavy chain synthesis rates in adult cardiocytes by an

increase in the rate of translational initiation. J Biol Chem 270:

21950 – 21957

Kim J, Namkung W, Yoon JS, Jo MJ, Lee SH, Kim KH, Kim JY, Lee MG (2009)

The role of translation elongation factor eEF1A in intracellular

alkalinization-induced tumor cell growth. Lab Invest 89: 867 – 874

Laplante M, Sabatini DM (2012) mTOR signaling in growth control and

disease. Cell 149: 274 – 293

Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic

implications of echocardiographically determined left ventricular mass in

the Framingham Heart Study. N Engl J Med 322: 1561 – 1566

Li X, Zhang Y, Cao S, Chen X, Lu Y, Jin H, Sun S, Chen B, Liu J, Ding J et al

(2009) Reduction of TIP30 correlates with poor prognosis of gastric cancer

patients and its restoration drastically inhibits tumor growth and

metastasis. Int J Cancer 124: 713 – 721

Li A, Zhang C, Gao S, Chen F, Yang C, Luo R, Xiao H (2013) TIP30 loss

enhances cytoplasmic and nuclear EGFR signaling and promotes lung

adenocarcinogenesis in mice. Oncogene 32: 2273 – 2281, 2281e 2271–2212

Lin KW, Yakymovych I, Jia M, Yakymovych M, Souchelnytskyi S (2010)

Phosphorylation of eEF1A1 at Ser300 by TbetaR-I results in inhibition of

mRNA translation. Curr Biol 20: 1615 – 1625

Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated

translational control. Nat Rev Mol Cell Biol 10: 307 – 318

McDermott PJ, Baicu CF, Wahl SR, Van Laer AO, Zile MR (2012) In vivo

measurements of the contributions of protein synthesis and protein

degradation in regulating cardiac pressure overload hypertrophy in the

mouse. Mol Cell Biochem 367: 205 – 213

McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T,

Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses

established cardiac hypertrophy induced by pressure overload. Circulation

109: 3050 – 3055

Nagai R, Low RB, Stirewalt WS, Alpert NR, Litten RZ (1988) Efficiency and

capacity of protein synthesis are increased in pressure overload cardiac

hypertrophy. Am J Physiol 255: H325 –H328

Nagatomo Y, Carabello BA, Hamawaki M, Nemoto S, Matsuo T, McDermott PJ

(1999) Translational mechanisms accelerate the rate of protein synthesis

during canine pressure-overload hypertrophy. Am J Physiol 277:

H2176 –H2184

Nakahara J, Kanekura K, Nawa M, Aiso S, Suzuki N (2009) Abnormal

expression of TIP30 and arrested nucleocytoplasmic transport within

ª 2019 The Authors EMBO Molecular Medicine 11: e10018 | 2019 19 of 20

Andrea Grund et al EMBO Molecular Medicine



oligodendrocyte precursor cells in multiple sclerosis. J Clin Invest 119:

169 – 181

Pittman YR, Kandl K, Lewis M, Valente L, Kinzy TG (2009) Coordination of

eukaryotic translation elongation factor 1A (eEF1A) function in actin

organization and translation elongation by the guanine nucleotide

exchange factor eEF1Balpha. J Biol Chem 284: 4739 – 4747

Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H,

Tateno K, Kayama Y, Harada M et al (2007) p53-induced inhibition of Hif-

1 causes cardiac dysfunction during pressure overload. Nature 446:

444 – 448

Sasikumar AN, Perez WB, Kinzy TG (2012) The many roles of the eukaryotic

elongation factor 1 complex. Wiley Interdiscip Rev RNA 3: 543 – 555

Schinkel S, Bauer R, Bekeredjian R, Stucka R, Rutschow D, Lochmuller H,

Kleinschmidt JA, Katus HA, Muller OJ (2012) Long-term preservation of

cardiac structure and function after AAV9-mediated microdystrophin gene

transfer in mdx mice. Hum Gene Ther 23: 566 – 575

Schneider-Poetsch T, Ju J, Eyler DE, Dang Y, Bhat S, Merrick WC, Green R,

Shen B, Liu JO (2010) Inhibition of eukaryotic translation elongation by

cycloheximide and lactimidomycin. Nat Chem Biol 6: 209 – 217

Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ,

Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy

in mice. Circulation 107: 1664 – 1670

Shtivelman E (1997) A link between metastasis and resistance to apoptosis of

variant small cell lung carcinoma. Oncogene 14: 2167 – 2173

Sivan G, Aviner R, Elroy-Stein O (2011) Mitotic modulation of translation

elongation factor 1 leads to hindered tRNA delivery to ribosomes. J Biol

Chem 286: 27927 – 27935

Tong X, Li K, Luo Z, Lu B, Liu X, Wang T, Pang M, Liang B, Tan M, Wu M et al

(2009) Decreased TIP30 expression promotes tumor metastasis in lung

cancer. Am J Pathol 174: 1931 – 1939

Van Goietsenoven G, Hutton J, Becker JP, Lallemand B, Robert F, Lefranc F,

Pirker C, Vandenbussche G, Van Antwerpen P, Evidente A et al (2010)

Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to

combat melanomas. FASEB J 24: 4575 – 4584

Wang X, Deng Y, Zhang G, Li C, Ding G, May HI, Tran DH, Luo X, Jiang DS,

Li DL et al (2019) Spliced X-box binding protein 1 stimulates

adaptive growth through activation of mTOR. Circulation 140:

566 – 579

Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, Leuchs

B, Nordheim A, Backs J, Engelhardt S et al (2014) Rapid and highly

efficient inducible cardiac gene knockout in adult mice using AAV-

mediated expression of Cre recombinase. Cardiovasc Res 104: 15 – 23

Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and

metabolism. Cell 124: 471 – 484

Xiao H, Palhan V, Yang Y, Roeder RG (2000) TIP30 has an intrinsic kinase

activity required for up-regulation of a subset of apoptotic genes. EMBO J 19:

956 – 963

Yue Y, Li Z, Harper SQ, Davisson RL, Chamberlain JS, Duan D (2003)

Microdystrophin gene therapy of cardiomyopathy restores dystrophin-

glycoprotein complex and improves sarcolemma integrity in the mdx

mouse heart. Circulation 108: 1626 – 1632

Zhang C, Li A, Zhang X, Xiao H (2011a) A novel TIP30 protein complex regulates

EGF receptor signaling and endocytic degradation. J Biol Chem 286:

9373 – 9381

Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D, Miyamoto S,

Huang K, Ceci M, Gu Y et al (2011b) MTORC1 regulates cardiac function and

myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 120:

2805 – 2816

Zhao J, Ni H, Ma Y, Dong L, Dai J, Zhao F, Yan X, Lu B, Xu H, Guo Y (2007)

TIP30/CC3 expression in breast carcinoma: relation to metastasis,

clinicopathologic parameters, and P53 expression. Hum Pathol 38:

293 – 298

Zwadlo C, Schmidtmann E, Szaroszyk M, Kattih B, Froese N, Hinz H, Schmitto

JD, Widder J, Batkai S, Bahre H et al (2015) Antiandrogenic therapy with

finasteride attenuates cardiac hypertrophy and left ventricular

dysfunction. Circulation 131: 1071 – 1081

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

20 of 20 EMBO Molecular Medicine 11: e10018 | 2019 ª 2019 The Authors

EMBO Molecular Medicine Andrea Grund et al


