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100–135; 160–250  nmol/mg protein, respectively). Male 
mice received an echocardiogram at 7  weeks of age with 
tissue harvested at 8 weeks. RV was used for [Cr] quantifi-
cation by HPLC to select LV tissue for subsequent analysis. 
Two-dimensional difference in-gel electrophoresis identi-
fied differentially expressed proteins, which were manually 
picked and trypsin digested for nano-LC–MS/MS. Prin-
cipal component analysis (PCA) showed efficient group 
separation (ANOVA P  ≤  0.05) and peptide sequences 
were identified by mouse database (UniProt 201203) using 
Mascot. A total of 27 unique proteins were found to be dif-
ferentially expressed between normal and high [Cr], with 
proteins showing [Cr]-dependent differential expression, 

Abstract  Mice over-expressing the creatine transporter 
have elevated myocardial creatine levels [Cr] and are pro-
tected against ischaemia/reperfusion injury via improved 
energy reserve. However, mice with very high [Cr] develop 
cardiac hypertrophy and dysfunction. To investigate these 
contrasting effects, we applied a non-biased hypothesis-
generating approach to quantify global protein and metab-
olite changes in the LV of mice stratified for [Cr] levels: 
wildtype, moderately elevated, and high [Cr] (65–85; 
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chosen for confirmation, e.g. α-crystallin B, a heat shock 
protein implicated in cardio-protection and myozenin-2, 
which could contribute to the hypertrophic phenotype. 
Nuclear magnetic resonance (¹H-NMR at 700 MHz) iden-
tified multiple strong correlations between [Cr] and key 
cardiac metabolites. For example, positive correlations 
with α-glucose (r²  =  0.45; P  =  0.002), acetyl-carnitine 
(r² = 0.50; P = 0.001), glutamine (r² = 0.59; P = 0.0002); 
and negative correlations with taurine (r²  =  0.74; 
P  <  0.0001), fumarate (r² =  0.45; P =  0.003), aspartate 
(r² = 0.59; P = 0.0002), alanine (r² = 0.66; P < 0.0001) 
and phosphocholine (r² = 0.60; P = 0.0002). These find-
ings suggest wide-ranging and hitherto unexpected adapta-
tions in substrate utilisation and energy metabolism with a 
general pattern of impaired energy generating pathways in 
mice with very high creatine levels.

Keywords  Cardiac energetics · Metabolism · Creatine 
kinase · Creatine transporter · Transgenic mice

Abbreviations
DIGE	� Difference in-gel electrophoresis
1H-NMR	� Proton nuclear magnetic resonance 

spectroscopy
LC–MS/MS	� Liquid chromatography tandem mass 

spectroscopy
PCA	� Principal component analysis
Cr	� Creatine
CrT	� Creatine Transporter
LVH	� Left ventricular hypertrophy
PCr	� Phosphocreatine

Introduction

Increasing myocardial creatine levels, [Cr], by 20–100 %, 
via over-expression of the plasma membrane creatine trans-
porter (CrT; Slc6A8), protects the murine heart against 
ischaemia/reperfusion injury and improves functional 
recovery (Lygate et al. 2012; Whittington et al. 2016).

The underlying mechanisms involve increases in phos-
phocreatine (PCr), glycogen levels and energy reserve. 
However, we previously reported that mice with [Cr] two-
fold higher than wild-type levels (i.e. >140 nmol/mg pro-
tein) develop LV hypertrophy (LVH) and chronic heart 
failure. This reflects the limits on creatine kinase activity to 
maintain the enlarged creatine pool adequately phosphoryl-
ated, thereby limiting the free energy available from ATP 
hydrolysis (Wallis et al. 2005).

A full understanding of the molecular changes that 
underpin these adverse effects will be important, if we 
are to safely exploit the therapeutic potential of moder-
ate creatine elevation. Earlier proteomics analysis using 

2D-Difference in-gel electrophoresis (2DIGE) at pI4-10 
identified only 7 differentially regulated proteins between 
hearts from wild-type and CrT over-expressing mice (CrT-
OE). Most notably, high [Cr] was associated with lower 
expression of β-enolase and reduced anaerobic lactate 
production, suggesting compromised glycolytic capacity 
(Phillips et al. 2010). However, at the time, there was lim-
ited understanding of the dose-related effects of elevating 
[Cr] and therefore, hearts with moderate and high creatine 
were analysed as one group, which may have obfuscated 
the results. The current study addresses this issue by strati-
fying groups in clearly defined normal, “therapeutic” [Cr] 
and toxic [Cr] ranges. We have sought to extend our find-
ings using higher resolution 2DIGE proteomics and incor-
porating an NMR-metabolomics approach for the first time. 
This has allowed a non-biased exploration of the potential 
molecular differences underpinning the beneficial versus 
detrimental cardiac phenotype in transgenic mice with aug-
mented [Cr].

Here, we identify [Cr]-dependent changes in the myo-
cardial proteome with relevance to both cardio-protection 
and susceptibility to LVH. Elevating creatine to very high 
levels resulted in wide-ranging effects on metabolic pro-
teins and metabolite levels, which are likely to have a nega-
tive impact on the energy providing capacity of the heart.

Materials and methods

Chemicals

All chemicals were supplied either by Sigma-Aldrich 
(Poole, UK), Tocris Bioscience (Bristol, UK), or VWR 
(Lutterworth, UK).

Transgenic mouse model and experimental design

We used male mice over-expressing rabbit creatine trans-
porter under control of the MLC2v promoter (CrT-OE) as 
previously described (Wallis et  al. 2005). The Tg55 trans-
genic line was used, since this line displays the widest range 
of creatine values, up to fourfold above normal. Transgenic 
males on a pure C57BL/6J genetic background were mated 
with C57BL/6J females to produce offspring that are 50 % 
WT:50 % CrT-OE. Approximately, 17 % of Tg55 mice have 
LV [Cr] >140 nmol/mg protein. Three groups of mice with 
creatine levels were pre-defined to ensure a clear [Cr] sepa-
ration among groups: (a) Wildtype (WT) littermates—LV 
[Cr] 70—90  nmol/mg protein; (b) CrT-OE medium cre‑
atine—LV [Cr] 110—140  nmol/mg protein; (c) CrT-OE 
high creatine—LV [Cr] >160  nmol/mg protein. CrT-OE 
were backcrossed with C57BL/6J for 10 generations and 
age-matched wildtype littermates were used as controls.
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Mice were kept in specific pathogen-free cages, 12-h 
light–dark cycle, controlled temperature and humidity, 
and fed ad  libitum with standard chow which is naturally 
creatine-free (Teklad global 16  % rodent diet) and water 
ad  libitum. Mice were non-fasted at the time of tissue 
harvest. This investigation was approved by the institu-
tional ethical review committee and conforms to Directive 
2010/63/EU of the European Parliament.

Echocardiography

At 7 weeks of age, mice were examined by echocardiogra-
phy to measure LV function and myocardial cross-sectional 
area. Short axis and Long axis views were obtained under 
isoflurane anaesthesia using the Visualsonics Vevo 2100. 
All examinations and measurements were performed by a 
single operator blinded to mouse genotype and creatine lev-
els. At 8 weeks (1 week post-anaesthetic exposure), mice 
were killed by cervical dislocation and the heart excised by 
dissecting LV free from RV, atria and great vessels. After 
brief washing in heparinised saline and blotting dry, the tis-
sue was freeze-clamped using Wollenberger tongs in liquid 
nitrogen and then stored at −80 °C, until analysed for total 
[Cr] (Lygate et al. 2012) using the RV portion and for prot-
eomic and metabolomics analysis using the LV.

[Cr] measurements by high‑pressure liquid 
chromatography (HPLC)

Total [Cr] levels were measured by HPLC from homog-
enised RV samples normalised to non-collagen protein 
[adapted from (Teerlink et  al. 1993)]. We have previ-
ously demonstrated that [Cr] is ~7  % lower in the RV, 
but is highly linearly related to LV levels (ten Hove et al. 
2008). A correction factor was, therefore, applied to esti-
mate LV [Cr] from RV [Cr] values based on historical data: 
LV[Cr] = 1.068(RV[Cr] + 1.9).

Proteomics

Previously published methods were followed as in (Yin 
et al. 2013) and detailed methods are included in the Sup-
plementary Data section.

Protein extraction and immunoblotting

LV heart samples were harvested using ice-cold RIPA buffer 
(Sigma) containing complete protease inhibitor cocktail 
(Roche) and phosphatase inhibitors as described in (Zervou 
et  al. 2013). Primary antibodies for myozenin-2,  total 
α-crystallin B and phospho-α-crystallin B were purchased 
from Insight Biotech (Wembley, UK). For normalisation 
purposes, the myozenin-2 blots were stripped of the primary 

antibody and re-probed against β-tubulin (Abcam, Cam-
bridge UK). For α-crystallin B, phospho signal was normal-
ised over total and VDAC (Abcam) as a mitochondrial spe-
cific protein (Youcef et al. 2015).

Catalase assay

Catalase activity was measured in LV tissue lysates using 
the Amplex Red Catalase Activity Assay Kit (Life tech-
nologies) according to the manufacturer’s protocol. Briefly, 
tissue lysates prepared in RIPA buffer (Sigma) were ana-
lysed for protein concentration and the optimal dilution 
for the assay was determined during optimisation experi-
ments. A standard curve was included in all assays at con-
centrations of 0–4000  mU/ml. Absorbance was measured 
at 550  nm against the standard curve, using a Molecular 
Devices plate reader type spectrophotometer. The catalase 
activity of each sample was calculated by subtracting the 
value of the sample from the zero catalase control.

qRT‑PCR

Total RNA was extracted from LV tissue, using Trizol rea-
gent (Invitrogen) and a phenol/chloroform step before puri-
fication by the Qiagen RNeasy Kit (Qiagen) as described 
before (Zervou et  al. 2013). The oligonucleotides used 
are listed on Suppl. Table  5. For quantification purposes, 
mRNA levels were normalised over the reference gene 
36B4 and using the ΔΔCt method (Livak and Schmittgen 
2001).

Metabolomics

Extraction of metabolites and 1H-NMR are described in 
Supplementary Data. Correlations between creatine and 
other metabolites was by Pearson correlation analysis using 
GraphPad Prism version 5.04.

Data analysis

All samples were analysed blinded and randomised 
to genotype and creatine levels. Data are presented as 
mean ± SE. Groups were compared by one-way ANOVA 
unless otherwise stated and differences were considered 
significant when P < 0.05.

Results and discussion

[Cr] and hypertrophy in CrT‑OE mice

A total of 44 male CrT-OE mice were screened by HPLC 
measurement of myocardial [Cr]. The three study groups 



S. Zervou et al.

1 3

were selected based on pre-defined clearly separated LV 
[Cr] values, which were estimated from RV creatine meas-
urements (Table  1). LV function was evaluated by echo-
cardiography, 1  week prior to tissue harvest. There were 
no significant differences between WT and medium [Cr] 
groups for any parameter. The high [Cr] group had signifi-
cant LV hypertrophy (myocardial CSA) with mild LV dila-
tation (end-diastolic area), but preserved contractile func-
tion (Fractional area change; Table 1). In support of these 
changes, [Cr] correlated strongly with myocardial CSA 
(r2 = 0.60, P = 0.0004). These findings are consistent with 
previous observations in CrT-OE mice at this age (Phillips 
et al. 2010).

Proteomics

A total of 34 differentially regulated peptides were 
identified in the pI6-9 and 33 in the pI4-7 experi-
ments, respectively (Fig.  1; Suppl Tables  1–3). There 
is an overlap of four proteins between the two experi-
ments, namely haemoglobin subunit β-1; isocitrate 
dehydrogenase [NADP] mito; elongation factor Tu, 
mito; β-enolase. PCA analysis showed efficient separa-
tion between groups (P ≤ 0.05). Differentially regulated 
proteins were analysed using a t test and the P value 
of <0.05 was set as the statistical significance thresh-
old. These differences per group are listed in Suppl 
Table 1. We used n = 4 samples/group to allow an entire 
experiment to be run on a single gel, thereby reducing 
between-experiment variability. This strategy was effec-
tive since we were able to confirm changes in β-enolase, 
glutathione s-transferase and 3-hydroxyacyl-CoA dehy-
drogenase in response to augmented LV creatine, in 
agreement with our previous study (Phillips et al. 2010). 
Novel protein targets that changed dose-dependently 
with [Cr] were of particular interest and therefore, 
selected for follow-up.

Myozenin‑2 and Nfatc1 pathway

Myozenin-2 is an endogenous calcineurin inhibitor. 
Reduced myozenin-2 results in unopposed calcineurin 
activity, relative activation of the nuclear factor of activated 
T-cells (Nfatc1) pathway and increased susceptibility to 
LVH (Diedrichs et  al. 2004; Frey et  al. 2004). Mutations 
in the myozenin gene are linked to human hypertrophic 
cardiomyopathy (Ruggiero et  al. 2013). Myozenin-2 was 
down-regulated in the high [Cr] hearts (−21 %; P = 0.004 
vs. Low; Fig. 2a, b) and this might explain the hypertrophic 
phenotype. However, this trend was not statistically signifi-
cant by immunoblotting (Fig.  2c), which used a different 
set of tissue samples. This may also reflect the differences 
in sensitivity of the two experimental techniques (proteom-
ics vs immunoblotting). Nevertheless, downstream activa-
tion of the Nfatc1 pathway can be inferred by elevated gene 
expression of regulator of calcineurin (Rcan1) (P = 0.017; 
Fig.  2d) and Foxo1 (Fig.  2e; P  =  0.01 WT vs medium 
[Cr] groups). It should be noted that while increased gene 
expression of Rcan1 is considered a reliable indicator of 
calcineurin activation, it is not obligatory for myozenin-2 
mediated hypertrophy (Ruggiero et al. 2013).

Alpha crystallin B chain

Alpha crystallin B is a heat shock protein and therefore, 
plays a role in stabilising proteins under stress conditions. 
Over-expression protects against necrotic and apoptotic 
death following ischaemia/reperfusion injury (Ray et  al. 
2001). Proteomic analysis showed that α-crystallin B 
chain increases in line with [Cr] (Fig. 2f, g) between WT 
and medium [Cr] (P =  0.0035) or between WT and high 
[Cr] groups (P =  0.0042). Activation of this protein was 
independently confirmed by immunoblotting for phospho 
α-crystallin B chain (CryAB) when normalised to total 
α-crystallin B VDAC and β-tubulin (Fig. 2h, i; P = 0.019). 

Table 1   Echocardiographic parameters of mice selected for further biochemical analysis based on LV creatine levels estimated from RV meas-
urements

Data are reported as mean ± SEM

LV left ventricle

* P < 0.05 medium vs WT [Cr], # P < 0.05 high vs medium [Cr], ‡ P < 0.05 high vs WT [Cr]

WT [Cr] Medium [Cr] High [Cr]

n 10 10 10

LV creatine (nmol/mg protein), mean (range) 81 ± 2 (74–88) 123 ± 2 (113–132)* 220 ± 10 (172–264)#‡

Myocardial cross-sectional area (mm2) 10.9 ± 0.3 10.9 ± 0.4 12.8 ± 0.5#‡

End-diastolic area (mm2) 10.2 ± 0.3 10.3 ± 0.4 11.7 ± 0.4‡

End-systolic area (mm2) 4.6 ± 0.4 4.9 ± 0.32 5.7 ± 0.5

Fractional area change (%) 55 ± 3 53 ± 2 52 ± 3

Heart rate (bpm) 526 ± 8 505 ± 14 535 ± 10
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This change in α-crystallin B may contribute mechanis-
tically to the protective effects of elevated [Cr] against 
ischaemia/reperfusion injury (Lygate et  al. 2012; Zervou 
et al. 2016).

Catalase

The endogenous antioxidant, catalase, was identified by 
two different peptides using 2DIGE and MS (Fig.  2j–l). 
In both cases, there was a drop in protein expression in 
response to augmentation of LV [Cr] and this consistent 
pattern invited further investigation (ANOVA P  =  0.047 
and P = 0.036, respectively for the two peptides). Catalase 
activity assays using LV lysates from the three groups of 
study showed a decrease between WT and medium [Cr] 
groups (P = 0.043) (Fig. 2m), but not between medium and 

high or WT and high [Cr]. A possible reason may be the 
discrepancy in assay sensitivity levels between proteomics 
analysis and enzyme activity. Creatine-supplementation has 
been attributed to direct antioxidant activity (Lawler et al. 
2002; Sestili et al. 2006), although this has not been evident 
in the intact beating heart (Aksentijevic et al. 2014b). One 
speculative explanation could be that the net antioxidant 
activity has not changed due to compensatory reduction in 
catalase.

Redox regulation

It is notable that approximately half the differentially 
regulated proteins identified in our experiments are tar-
gets for thioredoxin (Fu et  al. 2009) (indicated by a on 
Suppl. Table  1), which in turn is negatively regulated by 
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and labelled with Cy2. Each pair of Cy3/Cy5 labelled samples were 
mixed with 50 µg of internal standard and separated by IEF in either 
pH6-9 (a) or pH 4-7 (b) IPG strips followed by SDS-PAGE in 12 % 
large format gels. Fluorescence signals for each dye were scanned 

using DIGE Imager and spot maps were analysed by DeCyder soft-
ware. Differentially expressed spots were numbered and peptides 
identified by LC–MS/MS (complete list of peptides on Supplemen-
tary Tables 2 and 3). c, d Principal component analysis (PCA): WT 
vs High [Cr], P ≤ 0.05. WT group samples (blue dots) are well sepa-
rated from both High [Cr] group (red dots) and Medium [Cr] group 
samples (green dots)



S. Zervou et al.

1 3

thioredoxin interacting protein (Txnip). We have previously 
reported that Txnip is upregulated in CrT-OE hearts act-
ing as an endogenous inhibitor of further creatine uptake 
(Zervou et al. 2013).

Metabolomics

Initial partial least squares discriminant analysis (PLS-
DA) of the 1H-NMR results showed a good separation of 
the three groups for the aqueous metabolites (n = 6 each) 
(Suppl Fig. 1A). Representative NMR spectra are shown in 
Fig. 3.

Aqueous metabolites All detected metabolites are 
shown in Table 2 and corresponding correlations with LV 
[Cr] levels in Fig. 4. Creatine detected by HPLC and used 
for group stratification strongly correlated to the values 

obtained by 1H-NMR (Fig.  4a; P  <  0.0001), providing 
independent validation for accuracy and reproducibility of 
estimating LV [Cr] from RV [Cr] measurements. Unexpect-
edly, we observed multiple strong correlations between 
metabolite levels and [Cr], for example, a [Cr]-dependent 
increase in glucose levels (P =  0.002; Fig. 4b) and accu-
mulation of acetyl-carnitine (P = 0.001; Fig. 4d) and car-
nitine (P =  0.01; Fig.  4e), which suggests an abundance 
of mitochondrial acetyl-CoA levels (Longnus et al. 2001). 
In contrast, there was no change in myocardial triglycer-
ide (Suppl Table 4) or lactate levels (Table 2) with elevated 
[Cr]. The Krebs cycle intermediates, fumarate and suc-
cinate, were both reduced with high [Cr] (Fig.  4j, k) and 
there were strong effects on metabolites associated with 
anaplerotic flux into the Krebs cycle, e.g. reduced levels of 
glutamate (Fig. 4h), alanine (Fig. 4f) and aspartate (Fig. 4i). 
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Fig. 2   Differentially expressed proteins that changed dose-depend-
ently with LV [Cr]. The left column (a, f, j) shows protein spots 
enlarged from the full 2-D gels. Myozenin-2 decreased in response 
to elevated [Cr] in the proteomics data-set (b), with a non-signifi-
cant trend by Western blot (c). The regulator of calcineurin, Rcan1, 
increased as shown by qRT-PCR (D), similarly with FoxO1 (e) sug-
gesting downstream activation of the Nfatc1 pathway. α-crystallin 
B chain increased with [Cr] in both the proteomics data-set (g) and 
by immunoblotting (h, i). Phospho α-crystallin B expression lev-

els were normalised to total α-crystallin B, VDAC and β-tubulin (i; 
P = 0.019). b, g, k and l show quantification of proteomics results for 
myozenin2, α-crystallin B and catalase, respectively. On these graphs, 
spots in different colours represent WT, Medium and High [creatine] 
groups n =  4 each. On panel J, 33 and 34 indicate the two protein 
spots that were both identified as catalase. Catalase activity assays 
showed significant drop between WT and medium but not in high 
[Cr] group (m). Values were normalised over protein
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It seems likely that the strong negative correlation with tau-
rine (Fig. 4c) functions to balance the osmotic effect of cre-
atine accumulation, since both are abundant osmolytes (Ito 
et al. 2008). Phosphocholine levels were reduced by 23 % 
in the high [Cr] hearts (Suppl Table 4), which could reflect 
the burden of increased creatine biosynthesis, since choline 
is a methyl donor for the co-factor s-adenosyl methionine. 
However, it has been estimated that 95 % of total [Cr] is 
located in skeletal muscle (Persky and Brazeau 2001), so 
even a fourfold [Cr] elevation in the heart will have mini-
mal impact on whole body demands. 

The increased levels of glutamine we observed could 
also theoretically contribute to anaplerotic flux via gluta-
mate and α-ketoglutarate, however, this was not detected in 
the working rat heart perfused with 13C-labelled glutamine, 
even under pro-anaplerotic conditions (Lauzier et al. 2013). 
Instead, the authors detected changes in lipid metabo-
lism that could be blocked by inhibiting the hexosamine 

biosynthetic pathway (HBP) (Lauzier et  al. 2013). Glu-
tamine is required for the first step in the HBP which leads 
to protein O-GlcNAcylation and thereby influences a mul-
titude of cellular functions including known metabolic and 
cardioprotective proteins (Bond and Hanover 2015). Per-
fusion with glutamine has been shown to protect against 
ischaemia/reperfusion injury and again this could by 
blocked by addition of an HBP inhibitor (Liu et al. 2007). 
Further work is merited to test the hypothesis that elevated 
glutamine levels contribute to ischaemic protection in the 
CrT-OE mice via activation of the HBP.

Lipid metabolites Initial analysis by supervised PLS-
DA showed a weak separation of the three groups (Suppl 
Fig. 1B). The full list of lipid metabolites as quantitated 
by 1H NMR, is shown on Suppl. Table  4. Some choline 
is apparently incorporated into additional phosphatidyl-
choline, which was elevated with high [Cr], while sphin-
golipid was reduced. Exogenous phosphocreatine has 

Fig. 3   Effects of altered LV [Creatine] on cardiac metabolites. a 
Representative 1H-NMR spectrum acquired at 700  MHz. b Details 
from the NMR spectra corresponding to the WT, medium and high 
creatine groups. Sodium 3-trimethylsilyl-2,2,3,3-tetradeuteropropion-

ate (TSP) was added to the samples for chemical shift calibration and 
peak quantification. N.B. There are two peaks for taurine, each repre-
senting a different methylene group (Mayr et al. 2009)
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previously been shown to interact with phospholipids and 
stabilise the plasma membrane (Tokarska-Schlattner et al. 
2012) and it is possible that this may also subtly alter the 
biochemical composition. Other lipid metabolites were 
not altered to a physiologically relevant level with the 
caveat that 1H-NMR has low sensitivity (Hinterwirth et al. 
2014).

Integrating proteomics and metabolomics

Many of the differentially regulated proteins are involved 
in energy metabolism and we have attempted to inte-
grate all the relevant proteomic and metabolomic data in 
a single diagram (Fig. 5). Although we observe clear [Cr] 
dose-dependency for many metabolites, indicating a con-
tinuum, significant changes are only observed in the high 
[Cr] group. Likewise, we observed reduced expression of 
multiple metabolic enzymes, but predominantly in the high 
[Cr] group. Thus, a general pattern emerges of impaired 
energy-generating pathways in mice with very high [Cr], as 
follows:

Glucose metabolism impaired glycolysis is in agreement 
with our previous study, which showed that reduced enolase 

expression impacted on capacity for lactate production, but 
only in mice with [Cr] >140 nmol/g protein (Phillips et al. 
2010). Elevated PCr may reduce the need for glycolysis to 
power short-term increases in energy requirements (Safdar 
et  al. 2008). It is notable that total glucose levels are ele-
vated which may arise from either the intra or extracellular 
pool, suggesting that there is reduced glucose utilisation, 
consistent with our previous study. Excess glucose is prob-
ably converted to glycogen and we have previously shown 
that glycogen levels are positively correlated with myo-
cardial [Cr] (Lygate et al. 2012). It is not possible to infer 
the impact (if any) on glucose oxidation since we observed 
changes in pyruvate dehydrogenase (PDH) subunits that are 
directionally opposed and lactate was unchanged. Ideally, 
we would have measured PDH activity biochemically or by 
hyperpolarised 13C-pyruvate, however, the former requires 
an entire mouse heart and the latter would require pre-strat-
ification for [Cr] using in vivo 1H-MRS making it imprac-
tical and prohibitively expensive. As a surrogate measure, 
we quantified PDK4 mRNA, since this is a major regula-
tor of PDH activity in the heart (Sugden and Holness 2006) 
and observed no differences in expression (WT 1.8 ± 0.38; 
medium 2.317  ±  0.23; high 1.8  ±  0.34, respectively). 

Table 2   Aqueous metabolites as detected and quantitated by 1H-NMR

Data from the three groups were analysed by one-way ANOVA and Bonferroni multiple comparisons post hoc test using Graphpad Prism. All 
concentrations are calculated with respect to TSP as a reference standard and normalised to tissue wet weight. Concentrations are given in 
μmol/g wet weight

Ns non-significant difference

* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001

Metabolite WT (n = 6) SEM Medium (n = 6) SEM High (n = 6) SEM One-way ANOVA

WT/M M/H WT/H

Formate 10.006 9.749 17.687 11.207 9.537 6.062 ns ns ns

NAD(H) 0.517 0.022 0.602 0.067 0.609 0.036 ns ns ns

ATP + ADP 2.139 0.056 2.323 0.186 2.141 0.122 ns ns ns

Fumarate 0.036 0.005 0.031 0.003 0.018 0.002 ns ns **

Glucose 0.188 0.026 0.306 0.061 0.434 0.073 ns ns *

Creatine (CH2) 11.811 0.535 17.984 0.773 33.322 2.500 * *** ***

Glycine 0.539 0.024 0.519 0.027 0.505 0.022 ns ns ns

Taurine 29.766 1.159 27.257 1.775 16.413 1.799 ns ** ***

Carnitine 0.476 0.027 0.498 0.058 0.647 0.084 ns ns ns

Phosphocholine 0.246 0.011 0.222 0.012 0.187 0.005 ns ns **

Acetyl-carnitine 0.310 0.027 0.405 0.038 0.620 0.080 ns * **

Creatine (CH3) 10.067 0.483 15.619 0.654 28.861 2.170 * *** ***

Aspartate 1.778 0.160 1.619 0.120 1.096 0.132 ns * *

Glutamine 5.780 0.215 6.051 0.218 7.443 0.481 ns * **

Succinate 0.672 0.030 0.804 0.047 0.521 0.027 ns *** *

Glutamate 4.039 0.139 3.685 0.243 3.183 0.265 ns ns ns

Acetate 0.438 0.049 0.396 0.061 0.386 0.028 ns ns ns

Alanine 1.862 0.084 1.892 0.133 0.971 0.080 ns *** ***

Lactate 10.499 0.550 10.709 0.532 11.223 0.873 ns ns ns
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GLUT1-OE mice also have increased glucose uptake and 
glycogen stores and are protected against pressure-overload 
heart failure (Liao et al. 2002) and show improved tolerance 
to ischaemia (Luptak et al. 2007).

Fatty acid oxidation (FAO) the expression of three key 
enzymes involved in β-oxidation were reduced in high [Cr] 
compared to WT hearts (but not in moderate [Cr]), strongly 

suggesting a deficit in the ability to utilise fatty acids. Pre-
sumably, there is commensurate reduction in fatty acid 
uptake since we do not observe accumulation of lipids, 
with a trend for reduced triglycerides and significantly 
lower sphingolipids in the high [Cr] group.

Tricarboxylic acid (TCA) cycle Our findings also suggest 
an imbalance in the TCA cycle with potential restrictions at 
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Fig. 4   Metabolomic analysis of selected aqueous and lipid metabo-
lites shown with respect to LV creatine levels measured by NMR 
(based on data listed on Table 2 and Suppl Table 4). There are n = 6 

samples from each of the three groups to provide a continuum of cre-
atine values ranging from 9 to 13 µmol/g for wildtype, 15–21 µmol/g 
for medium [Cr] and 25–39 µmol/g for high [Cr]
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the level of isocitrate dehydrogenase and malate dehydroge-
nase. Changes in metabolite levels suggest altered anaple-
rotic flux, which might represent a response to these bottle-
necks (e.g. glutamate feeding into α-ketoglutarate; aspartate 
conversion to oxaloacetate). It is surprising that acetyl-car-
nitine is elevated in high [Cr] hearts since this indicates that 
substrate availability is higher than demand. Excess acetyl-
CoA is converted to acetyl-carnitine and exported out of the 
mitochondria, to be broken down to its constituent parts in 
the cytosol, where it may inhibit fatty acid uptake (Longnus 
et al. 2001). Overall, this suggests that despite acetyl-CoA 
production via glycolysis and FAO likely to be reduced in 

the high [Cr] hearts, the rate of acetyl-CoA production still 
outstrips the capacity of the TCA cycle.

Our analysis represents a snap-shot of protein expres-
sion and metabolite concentrations and may not repre-
sent dynamic flux through the system. It would have been 
informative to quantify substrate preference, e.g. by radi-
olabeled uptake experiments or 13C-hyperpolarisation stud-
ies. However, male mice with very high [Cr] are rare (~8 % 
of all offspring from heterozygote mating) and it took us 
several years to breed sufficient mice for the current study. 
Thus, complex experiments requiring high animal numbers 
are not practicable.

Fig. 5   Schematic integrating the proteomic and metabolomic 
changes resulting from elevating myocardial creatine in  vivo. Col‑
our-coded arrows indicate the directional change of significantly 
altered proteins and metabolites in wild-type (WT) versus creatine 
transporter over-expressing mice (CrT-OE): green arrows represent 
mice with medium [Cr] levels and red arrows mice with high [Cr]. 
The two red up/down arrows correspond to cases when two subunits 

of the same molecule changed in the opposite direction. Horizontal 
arrows correspond to metabolites that were identified, but did not 
change significantly. Very high [Cr] had detrimental effects on mul-
tiple energy-generating pathways. TCA tricarboxylic acid cycle, PCr 
phosphocreatine, NADH nicotinamide adenine dinucleotide, FADH2 
flavin adenine dinucleotide
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Theoretically, we might have gained further insights 
using computer modelling. However, the fact that we 
observed such large and widespread changes in metabolite 
concentrations is a truly surprising result, particularly given 
that creatine is at the terminus of energy-generating path-
ways with few known feedback mechanisms. Hence, exist-
ing in silico models are of limited utility in understanding 
these findings, which suggest deep interconnections that 
are not part of current metabolic models. For example, the 
CardioNet metabolic flux model we have used previously 
(Aksentijevic et al. 2014a) is insensitive to altered creatine 
levels.

A further potential limitation is that [Cr] correlates 
closely with LV hypertrophy (Wallis et al. 2005), which has 
its own metabolic sequelae, raising the possibility that the 
correlations observed between [Cr] and other metabolites 
are simply an epiphenomenon. The metabolic response to 
LVH is characterised by an increase in glycolytic and ana-
plerotic flux, manifesting as elevated lactate, alanine and 
aspartate in aortic banded mice and rats (Kolwicz et  al. 
2012; Sorokina et al. 2007). A similar pattern was observed 
in hyperthyroid-induced LVH where glucose and glycogen 
levels were also reduced (Atherton et  al. 2011). All these 
responses are directionally opposite to what we observe in 
high [Cr] hearts suggesting that the presence of LVH is not 
driving the metabolic phenotype. It should also be noted 
that the severity of LVH in our study is relatively mild. 
Myocardial cross-sectional area increased by 17 % in high 
vs normal [Cr], compared with an increase of 56 % in the 
transverse aortic constriction model (Lygate et  al. 2007), 
therefore, the driving force for metabolic remodelling is not 
as strong.

Our model of augmented cardiac creatine is a result of 
transgenesis and therefore, a ‘forced’ metabolic phenotype 
that does not occur naturally. Whether there is metabolic 
feedback at physiological creatine levels that is lost under 
the pathologically low [Cr] levels observed in the failing 
heart remains to be established. Nevertheless, our find-
ings are highly informative when considering target levels 
for therapeutic [Cr] aimed at improving cardiac energetics, 
most likely via pharmacological activation of the creatine 
transporter (Zervou et al. 2016). Only the high [Cr] group 
had a severe metabolic phenotype, which supports the con-
cept of a safe window for creatine elevation between 20 
and 100 % above wild-type levels (i.e. corresponding to the 
medium [Cr] group), which we previously demonstrated 
does not impact on in  vivo function and protects against 
ischaemia–reperfusion injury (Lygate et al. 2012).

Finally, we took a non-biased approach to identify pro-
teomic and metabolic adaptations in response to elevated 
myocardial creatine levels in vivo. In mice with very high 
[Cr], we observed reduced expression in multiple proteins 
involved in energy generation, implying impairment of 

glycolysis, fatty acid oxidation and the TCA cycle, result-
ing in a substrate rich, but energy-poor heart. Surprisingly, 
strong correlations were observed between creatine tissue 
levels and many key metabolites suggesting the existence 
of hitherto unsuspected feedback mechanisms. The poten-
tial link between creatine and glucose uptake is of particu-
lar interest for future study.
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