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Objectives This study sought to assess the long-term predictive value and net reclassification for risk of cardiovascular dis-
ease (CVD) of biomarkers reflecting oxidation-specific epitopes (OSEs).

Background OSEs are immunogenic, proinflammatory, and proatherogenic. The long-term predictive value and net reclassifi-
cation of OSEs for risk of CVD events are not known.

Methods Oxidized phospholipids on apolipoprotein B-100 (OxPL/apoB) and immunoglobulin (Ig)-G (IgG) and IgM autoanti-
bodies to malondialdehyde-modified, low-density lipoprotein (MDA-LDL) and copper-oxidized LDL (Cu-OxLDL)
were measured in 765 subjects in 1995 and 656 subjects in 2000 in the Bruneck study, representing 45- to
84-year-old men and women from the general community.

Results Over 15 years of follow-up, 138 subjects reached the primary endpoint of incident CVD (ischemic stroke, myo-
cardial infarction, new-onset unstable angina, acute coronary interventions, and vascular death). In a multivari-
able Cox model, the highest tertile of OxPL/apoB was associated with higher risk of CVD (hazard ratio [HR]: 2.4;
95% confidence interval [CI]: 1.5 to 3.7) and stroke (HR: 3.6; 95% CI: 1.8 to 7.4) compared with the lowest ter-
tile. IgG Cu-OxLDLs were associated with higher risk of CVD, whereas IgM MDA-LDLs were associated with lower
risk. Using OxPL/apoB, IgG Cu-OxLDL, and IgM MDA-LDL variables, the area under the curve (AUC) for CVD risk
prediction increased from 0.664 (95% CI: 0.629 to 0.697) to 0.705 (95% CI: 0.672 to 0.737) (p � 0.048). The
net reclassification index (NRI) was 0.163 (p � 0.0044) and 0.332 (p � 0.0001) in all subjects (n � 765) and in
subjects with intermediate risk (n � 305), respectively. Of 627 subjects who remained free of CVD, 108 were
correctly reclassified to a lower risk category, and 83 were reclassified to a higher category (categories: 15-year
risk �15%, 15% to 30%, �30%).

Conclusions OSE biomarkers predict 15-year CVD and stroke outcomes and provide potential clinical utility by reclassifying a
significant proportion of individuals into higher or lower risk categories after traditional risk assessment. (J Am
Coll Cardiol 2012;60:2218–29) © 2012 by the American College of Cardiology Foundation

Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jacc.2012.08.979
Atherosclerosis is initiated early in human life in an occult
manner due to a variety of genetic, environmental, and
behavioral risk factors, and is the leading cause of cardio-
vascular disease (CVD) events. It originates by the genera-
tion of subintimal macrophage foam cells that arise mainly
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due to the accumulation of oxidized lipids through unreg-
ulated uptake by macrophage scavenger receptors, an arm of
the innate immune response in removing toxic substances to
protect the host (1,2). After a long latent period of integra-
tive and detrimental insults to the vessel wall, such as
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oxidation and chronic inflammation (3–5), it manifests
clinically as either symptomatic obstructive disease, such as
angina or claudication, or acute atherothrombosis, such as
myocardial infarction and ischemic stroke.

Various degrees of subclinical atherosclerosis are almost
universally present in people living in Western societies (6).
However, the assessment of the specific future risk that
subclinical atherosclerosis confers is difficult to assess at the
individual level, even with invasive and expensive testing.
This is due to the variable nature of its clinical expression,
which is in part a consequence of the qualitative differences
in plaque components in similar sized lesions. Furthermore,
the current clinical paradigm of treating asymptomatic
patients is appropriately focused on treating underlying risk
factors and is not generally centered on treating only those
patients with documented presence of atherosclerosis. In
addition, aside from hypolipidemic therapies, specific treatments
that target pathogenic mechanisms leading to clinical
events, such as the oxidative, immune, and inflammatory
components, do not yet exist.

In that regard, plasma biomarkers of CVD risk that
provide value to easily measured clinical and laboratory
variables are needed (7). In particular, biomarkers that
function as a link between risk factors and clinical CVD and
are also putatively involved in causal pathways of athero-
sclerosis would be an attractive addition to the clinical
armamentarium. Oxidation-specific epitopes (OSEs), pres-
ent in plasma on circulating lipoproteins and lipoprotein (a)
[Lp(a)] and in the vessel wall on lipoproteins, apoptotic
cells, and matrix proteins, are strong candidates as poten-
tially causal biomarkers more proximal to the atherosclerotic
disease process (8). OSEs represent “danger-associated mo-
lecular patterns (DAMPs)” (2) that are proinflammatory
and are integrally involved in oxidative, innate, and adaptive
immune responses. In this 15-year prospective study from
the Bruneck population, we hypothesized that measure-
ments reflecting risk from OSEs would predict the devel-
opment of new CVD events and add clinical utility to
established risk factors.

Methods

Study subjects. The Bruneck Study is a prospective
population-based survey of the epidemiology and pathogen-
esis of atherosclerosis in a sex- and age-stratified random
sample of all inhabitants of Bruneck, Italy (125 women and
125 men in their fifth to eighth decades [n � 1,000]) (9).
The present study focuses on blood samples from the 1995
examination and the follow-up period for clinical events
between 1995 and 2010 (100% follow-up). In 1995, the
study population consisted of 826 subjects, and plasma
samples for assessment of oxidized phospholipids on apoli-
poprotein B-100 (OxPL/apoB) were available in a random
subsample of 765 subjects. The appropriate ethics com-
mittees approved the study protocol, and all study sub-

jects gave written informed consent before entering the
study. All risk factors were as-
sessed by validated standard proce-
dures. Study methodology and lab-
oratory methods for factors listed in
Table 1 were previously described in
detail (9–11).
Determination of OSEs on li-
poproteins. OxPL/apoB levels
and immunoglobulin-G (IgG)
and IgM autoantibodies to
malondialdehyde-modified, low-
density lipoprotein (MDA-LDL)
and copper-oxidized (Cu-OxLDL)
and apoB-immune complexes
(apoB-IC) were measured in 765
subjects from the 1995 time point
and in 656 subjects from the 2000
time point. OxPL/apoB levels were
measured, as previously described,
by chemiluminescent enzyme-
linked immunosorbent assay using
the murine monoclonal antibody
E06, which binds to the phospho-
choline (PC) head group of oxidized
but not native phospholipids (10).
When the OxPL/apoB levels in
Bruneck were first published (10),
they were reported in 2 ways: as
relative light units (RLUs) and as a
ratio of E06 (OxPL RLUs) binding
to presence of apoB on the plate,
measured by monoclonal antibody
MB47 (apoB RLUs) (i.e., OxPL/
apoB ratio), as previously described
(10,12). It was demonstrated that
these measurements provided nearly
identical results and were essentially
interchangeable, thus subsequent
studies reported OxPL/apoB as
RLUs due to the more simplistic
methodology of their determination.
In the present analysis, we show
both levels, but the analyses are
based on OxPL/apoB RLU data.
IgG and IgM autoantibodies,
apoB-IC, and Lp(a) were measured as previously described
(13–15). The intra- and interassay coefficients of variation
for OxPL/apoB were 6% to 10%. The University of
California-San Diego Human Research Protection Pro-
gram approved these studies. We previously showed that
these biomarkers are stable with prolonged freezing or
transport to processing sites on ice (10,16,17).
Assessment of future cardiovascular events. The primary
composite cardiovascular endpoint included ischemic
stroke, myocardial infarction, new-onset unstable angina,
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apoB-IC � apoB-immune
complexes
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CFH � complement
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oxidized low-density
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ischemic stroke, myocardial infarction, sudden cardiac death,
or aortic aneurysm rupture). The extended composite car-
diovascular endpoint additionally included transient ische-

Baseline Characteristics of Study Subjects (n �to Incident Cardiovascular Disease During FolloTable 1 Baseline Characteristics of Study S
to Incident Cardiovascular Disease

Variable

Demographic parameters

Age, yrs

Female, %

Oxidation-specific biomarkers

OxPL/apoB, ratio

OxPL/apoB, RLU

Lp-PLA2 activity, �mol/min/L

MDA-LDL IgM, RLU

Cu-OxLDL IgM, RLU

ApoB-IC IgM, RLU

MDA-LDL IgG, RLU

Cu-OxLDL IgG, RLU

ApoB-IC IgG, RLU

Lipids and lipoproteins

Triglycerides, mg/dl

HDL cholesterol, mg/dl

LDL cholesterol, mg/dl

Lipoprotein(a), mg/dl

ApoA, mg/dl

ApoB, mg/dl

Vascular risk factors

Hypertension, %

Systolic BP, mm Hg

Diastolic BP, mm Hg

Current smoking, %

Smoking, cigarettes/d

Diabetes (ADA), %

Fasting glucose, mg/dl

Ferritin, �g/l

Uric acid, mg/dl

Urinary albumin, g/l

Inflammation

Fibrinogen, mg/dl

C-reactive protein, mg/l

Physical activity and body composition

Sports index (Baecke), score

Alcohol, g/day

Body mass index, kg/m2

Waist/hip ratio, cm/cm

Pre-existent CVD, medication and antioxidant supplements

Statins, %

Platelet inhibitors, %

Antioxidant supplements,* %

CVD, %

Values are mean � SD, median (interquartile range)†, or %. To convert
values for triglycerides to millimoles per liter, multiply by 0.01129. *An
were taking beta-carotene. †Median and interquartile range are prese

ADA � American Diabetes Association: apoB � apolipoprotein B; B
protein; Cu-OxLDL � copper-oxidized low-density lipoproteins; CVD � c
LDL � low-density lipoprotein; Lp-PLA2 � lipoprotein-associated ph
phospholipids on apolipoprotein B-100; RLU � relative light unit.
mic attacks (TIAs) and all revascularization procedures.
Acute coronary artery disease included myocardial infarc-
tion (fatal and nonfatal), new-onset unstable angina defined
as angina at rest, crescendo angina or new-onset severe

) According(1995 to 2010)ts (n � 765) According
g Follow-Up (1995 to 2010)

Primary Composite CVD Endpoint

p ValueNo (n � 627) Yes (n � 138)

61.4 � 10.9 68.8 � 10.5 �0.0001

51.5% 40.6% 0.020

0.098 � 0.109 0.161 � 0.172 �0.0001

9,094 � 9,966 14,773 � 15,590 �0.0001

768.8 � 195.2 858.6 � 201.1 �0.0001

17,504 � 9,739 16,271 � 7,956 0.165

4,848 � 3,854 4,227 � 2,493 0.018

5,159 � 2,826 4,544 � 2,255 0.006

17,642 � 10,713 18,109 � 11,886 0.650

9,577 � 6,284 10,769 � 11,017 0.086

7,033 � 3,871 6,787 � 3,419 0.491

109 (78–15) 119 (93–170) 0.010

59.5 � 16.2 56.4 � 17.3 0.049

143.3 � 37.1 153.1 � 40.5 0.006

10.8 (4.5–31.0) 21.5 (7.0–55.4) 0.001

166.5 � 27.1 163.8 � 29.9 0.296

113.6 � 30.2 125.4 � 34.5 �0.0001

66.0% 75.4% 0.034

146.6 � 19.8 154.3 � 22.4 �0.0001

86.7 � 8.9 88.0 � 9.7 0.118

20.4% 17.4% 0.420

2.6 � 6.2 2.6 � 6.5 0.992

6.9% 13.8% 0.007

100.8 � 22.7 109.5 � 32.8 0.004

131.3 � 153.7 151.8 � 162.8 0.162

4.6 � 1.3 5.2 � 1.3 �0.0001

9.0 (7.0–16.0) 12.0 (8.8–54.8) �0.0001

284.8 � 72.9 303.6 � 70.5 0.006

1.5 (0.8–3.0) 2.1 (1.1–4.5) 0.010

2.4 � 0.9 2.2 � 0.8 0.002

24.2 � 31.4 22.9 � 30.1 0.640

25.5 � 3.8 26.1 � 4.1 0.088

0.93 � 0.07 0.95 � 0.07 0.001

3.3 4.3 0.609

9.6 23.9 �0.0001

4.0 2.0 0.304

6.9 25.4 �0.0001

for cholesterol to millimoles per liter, multiply by 0.02586. To convert
t supplements include vitamins A, C, and E, and selenium. No subjects
r markedly skewed variables.

ood pressure; apoB-IC � apoB-immune complexes; CRP � C-reactive
scular disease; HDL � high-density lipoprotein; Ig � immunoglobulin;
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deaths. Myocardial infarction was confirmed when World
Health Organization criteria for definite disease status were
met. Stroke and TIA were classified according to the criteria
of the National Survey of Stroke. All other revascularization
procedures (angioplasty and surgery) were carefully re-
corded. Ascertainment of events or procedures did not rely
on hospital discharge codes or the patient’s self-report, but
on a careful review of medical records provided by the
general practitioners and files of the Bruneck Hospital and
the extensive clinical and laboratory examinations per-
formed as part of the study protocols. Cases were ascertained
from 1995 to 2010, and 100% follow-up was achieved.
Statistics. Calculations were performed with SPSS 18.0
(SPSS Inc., Chicago, Illinois) and Stata 12.0 MP (Stata-
Corp., College Station, Texas) software packages. Contin-
uous variables were presented as mean � SD or medians
(interquartile range) and dichotomous variables as percent-
ages. Differences in baseline levels of vascular risk attributes
between subjects with and without subsequent CVD (1995
to 2010) were analyzed with the Student t test and the
chi-square test. Variables with a markedly skewed distribu-
tion (triglycerides, urinary albumin, C-reactive protein
[CRP], and Lp[a]) were log-transformed to decrease the
impact of extreme observations. To quantify the within-
person variability of OSE biomarkers, regression dilution
ratios (taking values between 0 and 1, with 1 indicating
absence of variability [18]) were calculated based on 656
repeated measurements in samples taken 5 years apart (1995
and 2000). Long-term average levels of OSE markers were
estimated by multivariate regression calibration models that
regressed repeat measurements of the exposure on baseline
exposure and confounder variables (19). Cox proportional
hazard models were used to assess whether baseline OSE
biomarker levels were independent predictors of CVD risk.
For this purpose, OSE biomarkers were either entered as
continuous variables or categorized in thirds (tertiles). We
fitted 1 model adjusted for age, sex, and previous CVD and
another model that additionally included systolic blood
pressure, smoking, diabetes, ferritin level, LDL and high-
density lipoprotein (HDL) cholesterol, alcohol consump-
tion, social status, sports activity (Baecke score), and loge-
transformed levels of CRP (“multivariable Cox model”). A
third model included predicted long-term average levels
instead of baseline levels of OSE biomarkers to account for
the variability of OSE biomarker levels over time. ApoB and
Lp(a) were not included because of the high correlation
with LDL cholesterol and OxPL/apoB, respectively, and
the potential problem of collinearity. Results remained
virtually the same when apoB was used instead of LDL
cholesterol or when Lp(a) was used instead of OxPL/apoB.
To test for linear trend, we used the median level in each
tertile group of OxPL/apoB as a continuous variable. All
analyses were repeated using Lp(a) concentration instead of
OxPL/apoB level. Proportional hazard assumptions were
tested for OSE biomarkers and satisfied in all models. This

was done by fitting interactions of the variables with survival “
time (Cox models with time-dependent covariates) and by
scaled Schoenfeld residuals. Differential associations in sub-
groups were analyzed by inclusion of appropriate interaction
terms. The incremental predictive value of OSE biomarkers
over the Framingham Risk Score (FRS) was assessed by
conventional C statistics, considering events but not time-
to-events, and the Harrell’s C-index for censored time-to-
event data (20) (both measures for model discrimination
with larger values indicate better discrimination). In addi-
tion, we calculated the net reclassification index (NRI)
according to Pencina et al. (21), the continuous NRI, a
category-free version of the NRI (22), and the integrated
discrimination index (IDI), which integrates the NRI over
all possible cutoffs and is equivalent to the difference in
discrimination slopes (21) (all measures of reclassification).
Comparison of the C statistics and Harrell’s C for models,
including and not including OSE markers, was performed
according to the method of DeLong (23) and with the
STATA procedures “somersd” and “lincom,” respectively.
NRIs were calculated across categories of predicted 15-year
risk of �15%, 15% to 30%, and �30%. All reported p values
re 2-sided.

esults

aseline characteristics. Table 1 displays the baseline
haracteristics of study subjects (n � 765) according to
ncident CVD during follow-up (1995 to 2010). Subjects
ho developed the primary CVD endpoint (n � 138) were
ore likely to be older and male, have higher levels of LDL

holesterol, vascular, coagulation, inflammatory, and an-
hropomorphic and activity risk factors, and to have pre-
xistent CVD at study entry in 1995.

OxPL/apoB levels and lipoprotein-associated phospho-
ipase A2 activity levels were higher in patients with incident
VD. In contrast, IgM antibodies to MDA-LDL, Cu-
xLDL, and apoB-IC were lower in subjects with CVD

vents, with the latter 2 associations achieving significance.
gG Cu-OxLDL antibodies tended to be higher in patients
ith subsequent CVD. Within-person variability of these
arkers was generally low. The regression dilution ratio of
easurements taken 5 years apart was 0.83 (0.80 to 0.86) for
xPL/apoB levels; 0.91 (0.81 to 1.01) for IgG and 0.72

0.64 to 0.79) for IgM Cu-OxLDL; 0.70 (0.64 to 0.76) for
gG and 0.87 (0.82 to 0.91) for IgM MDA-LDL; and 0.67
0.61 to 0.74) for IgG and 0.69 (0.62 to 0.76) for IgM
poB-IC.

xPL/apoB and incident CVD. The risk of the primary
omposite CVD endpoint increased across tertiles of OxPL/
poB and was particularly prominent in tertile 3 (Table 2).
hese associations were consistent across 3 models of
ultivariable adjustment: 1) following adjustment for age,

ex, and previous CVD; 2) in a multivariable Cox model of
3 clinical variables, including high-sensitivity C-reactive
rotein (hsCRP); and 3) in the same Cox model with

usual” OxPL/apoB levels that considered the variability of
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OxPL/apoB over time estimated by multivariate regression
calibration based on measurements in 1995 and 2000. In
model 3, the highest tertile of OxPL/apoB was associated
with a hazard ratio (HR) of 2.4 and 95% confidence interval

Association of OxPL/apoB Tertile Groups With Cardiovascular Disein the Bruneck Study Cohort (1995 to 2010) (n � 765)Table 2 Association of OxPL/apoB Tertile Groups With Cardiov
in the Bruneck Study Cohort (1995 to 2010) (n � 765

Model

Hazard Ratio (95% CI) OxPL
Tertile Groups

I II

Primary composite CVD endpoint* (n � 138)

Adjusted for age, sex, and prior CVD 1.0 1.1 (0.7–1.7) 2.1

Multivariable Cox model† 1.0 1.1 (0.7–1.7) 2.2

Multivariable Cox model†‡ 1.0 1.0 (0.7–1.7) 2.3

Multivariable Cox model†§ 1.0 1.2 (0.7–1.9) 2.4

Extended composite CVD endpoint* (n � 154)

Adjusted for age, sex, and prior CVD 1.0 1.0 (0.6–1.6) 2.1

Multivariable Cox model† 1.0 1.0 (0.6–1.5) 2.1

Multivariable Cox model†§ 1.0 1.1 (0.7–1.8) 2.2

Stroke (n � 60)

Adjusted for age, sex, and prior CVD 1.0 1.1 (0.5–2.4) 2.9

Multivariable Cox model† 1.0 1.0 (0.5–2.2) 3.2

Multivariable Cox model†§ 1.0 1.5 (0.7–3.4) 3.6

Stroke/TIA (n � 76)

Adjusted for age, sex, and prior CVD 1.0 1.1 (0.6–2.2) 2.8

Multivariable Cox model† 1.0 1.1 (0.5–2.1) 2.9

Multivariable Cox model†§ 1.0 1.5 (0.8–3.1) 3.2

Acute coronary artery disease* (n � 70)

Adjusted for age, sex, and prior CVD 1.0 1.2 (0.6–2.1) 1.5

Multivariable Cox model† 1.0 1.2 (0.7–2.3) 1.5

Multivariable Cox model†§ 1.0 1.1 (0.6–2.2) 1.5

Myocardial infarction (n � 53)

Adjusted for age, sex, and prior CVD 1.0 1.2 (0.6–2.3) 1.3

Multivariable Cox model† 1.0 1.2 (0.6–2.4) 1.2

Multivariable Cox model†§ 1.0 1.0 (0.5–2.2) 1.2

Vascular death* (n � 64)

Adjusted for age, sex, and prior CVD 1.0 0.9 (0.5–1.8) 1.3

Multivariable Cox model† 1.0 0.9 (0.5–1.7) 1.3

Multivariable Cox model†§ 1.0 0.8 (0.4–1.7) 1.2

Death from all causes (n � 250)

Adjusted for age, sex, and prior CVD 1.0 1.1 (0.8–1.5) 1.0

Multivariable Cox model† 1.0 0.9 (0.7–1.3) 1.2

Multivariable Cox model†§ 1.0 1.3 (0.9–1.8) 1.4

Squares and lines are hazard ratios (HRs) and 95% confidence intervals. HRs were derived from Co
level (right-hand columns). In all analyses, only the first outcome event occurring in study participan
cardiovascular endpoint subsumes ischemic stroke, acute coronary artery disease, and vascular de
procedures. Acute coronary artery disease subsumes myocardial infarction (fatal and nonfatal),
subsume deaths due to ischemic stroke, myocardial infarction, sudden cardiac death, and aortic
pressure, smoking, diabetes, ferritin level, LDL and HDL cholesterol, alcohol consumption, social sta
were used instead of baseline levels. “Usual” OxPL level considers the variability of OxPL over t
described plus statin medication, platelet inhibitor medication, and antioxidant supplement use.

Abbreviations as in Table 1.
(CI) of 1.5 to 3.7 (p � 0.001) compared with the lowest
tertile. Similar findings were present for the extended CVD
endpoint that additionally included TIA and all revascular-
ization procedures (Table 2). For individual endpoints,
OxPL/apoB was a strong predictor of stroke (HR: 3.6; 95%

isklar Disease Risk

p Value for
Trend

Hazard Ratio (95% CI) per 1-SD Unit
Increase in OxPL/apoB p Value

.1) �0.0001 �0.0001

.4) �0.0001 �0.0001

.5) �0.0001 �0.0001

.7) �0.0001 �0.0001

.0) �0.0001 �0.0001

.1) �0.0001 �0.0001

.4) �0.0001 �0.0001

.4) �0.001 �0.001

.2) �0.0001 �0.001

.4) �0.0001 �0.001

.9) �0.0001 0.001

.1) �0.0001 0.002

.1) �0.0001 0.002

.7) 0.148 0.032

.7) 0.190 0.066

.9) 0.139 0.066

.5) 0.546 0.134

.4) 0.662 0.244

.5) 0.525 0.244

.4) 0.244 0.031

.4) 0.216 0.048

.3) 0.381 0.048

.4) 0.985 0.977

.6) 0.157 0.264

.9) 0.176 0.264

ls and calculated for OxPL tertile groups (left-hand columns) and for a 1-SD unit increase in OxPL
considered, whereas potential further or recurrent events were censored. *The primary composite
extended composite cardiovascular endpoint additionally considers TIAs and all revascularization

set unstable angina, acute coronary interventions, and sudden cardiac deaths. Vascular deaths
sm rupture. †Multivariable adjustment: age, sex, previous cardiovascular disease, systolic blood
orts activity (Baecke score), and loge-transformed levels of C-reactive protein. ‡“Usual” OxPL levels

was estimated by multivariate regression calibration. §Multivariable adjustment as previously
ase Rascu
)

/apoB

III

(1.4–3

(1.5–3

(1.5–3

(1.5–3

(1.4–3

(1.4–3

(1.4–3

(1.5–5

(1.6–6

(1.8–7

(1.6–4

(1.6–5

(1.7–6

(0.9–2

(0.8–2
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(0.7–2

(0.6–2
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(0.6–2

(0.8–1

(0.9–1

(1.0–1

x mode
ts was

ath. The
new-on
aneury
tus, sp

ime and
CI: 1.8 to 7.4; p � 0.001) and combined stroke/TIA (HR:



xPL/ap

2223JACC Vol. 60, No. 21, 2012 Tsimikas et al.
November 20/27, 2012:2218–29 OSE, 15-Year CVD Events, and Net Reclassification
3.2; 95% CI: 1.7 to 6.1; p � 0.001). These findings were
consistent when the data were evaluated as continuous
variables per 1 SD in OxPL/apoB (Tables 2 and 3), showing
HRs of approximately 1.25 to 1.5. In this analysis, OxPL/
apoB also predicted vascular death (Table 2). All analyses
were repeated using Lp(a) concentrations instead of OxPL/
apoB levels, and similar results were obtained.

Cumulative hazard plots depicting the composite CVD
endpoint (Fig. 1A) and stroke (Fig. 1B) indicated a pro-

Association of Oxidation-specific Biomarkers With Cardiovascular Din the Bruneck Study Cohort (1995 to 2010) (n � 765)Table 3 Association of Oxidation-specific Biomarkers With Car
in the Bruneck Study Cohort (1995 to 2010) (n � 765

Primary Composite CVD Endpoint
(n � 138)

HR (95% CI) p Value H

OxPL/apoB 1.34 (1.19–1.51) �0.0001 1.42

1.37 (1.20–1.56)* �0.0001* 1.47

1.38 (1.21–1.57)† �0.0001† 1.48

Cu-OxLDL IgG 1.11 (0.98–1.27) 0.104 1.25

1.18 (1.03–1.37)* 0.022* 1.33

1.18 (1.02–1.37)† 0.028† 1.32

MDA-LDL IgM 0.72 (0.53–0.98) 0.034 0.81

0.69 (0.50–0.95)* 0.021* 0.79

0.69 (0.50–0.94)† 0.018† 0.79

Hazard ratios (HRs) and 95% confidence intervals (CIs) were derived from Cox models and calculate
age, sex, previous CVD, OxPL/apoB level, Cu-OxLDL IgG, and MDA-LDL IgM antibodies. *HRs (95% C
smoking, diabetes, ferritin level, LDL and HDL cholesterol, alcohol consumption, social status, spor
used instead of baseline OxPL/apoB levels. “Usual” OxPL/apoB level considers the variability of O

Abbreviations as in Table 1.

Figure 1 Cumulative Hazard Curves for CVD Incidence and Stro

The median oxidized phospholipids on apolipoprotein B-100 (OxPL/apoB) level (rel
the middle tertile, it was 4,862 (range 3,632 to 8,124); and for the highest tertile
cular disease (CVD) and 60 cases of incident stroke. Y-axis shown in light blue in
gressive divergence in event frequency over 15-year
follow-up in OxPL/apoB tertile 3 compared with tertiles 1
and 2.

Subgroup analysis revealed consistent findings across
sex, age, CVD risk factors, Lp-PLA2 activity, hsCRP,
and FRS for both the tertile analysis and as continous
variables for a 1-SD change for the primary composite
CVD endpoint (Fig. 2) and for stroke as an individual
endpont (Fig. 3).

se Riskscular Disease Risk

Stroke
(n � 60)

Acute Coronary Artery Disease
(n � 70)

% CI) p Value HR (95% CI) p Value

–1.69) 0.0001 1.22 (1.01–1.46) 0.036

–1.78)* �0.0001* 1.20 (0.99–1.45)* 0.066*

–1.80)† �0.0001† 1.21 (1.00-1.46)† 0.052†

–1.46) 0.005 0.91 (0.69–1.21) 0.516

–1.58)* 0.001* 0.95 (0.71–1.28)* 0.738*

–1.58)† 0.002† 0.94 (0.70–1.27)† 0.703†

–1.05) 0.109 0.82 (0.69–0.97) 0.019

–1.02)* 0.075* 0.79 (0.66–0.95)* 0.011*

–1.03)† 0.084† 0.79 (0.66–0.95)† 0.010†

1-SD unit increase in OxPL level, Cu-OxLDL IgG, and MDA-LDL IgM antibodies. Cox models included
p values are from multivariable Cox models with additional adjustment for systolic blood pressure,
ity (Baecke score), and loge-transformed level of C-reactive protein. †“Usual” OxPL/apoB level was
oB over time and was estimated by multivariate regression calibration.

cidence by OxPL Tertile Groups, 1995 to 2010

ight units [RLUs]) for the lowest tertile was 2,908 (range 1,584 to 3,631); for
s 18,830 (range 8,125 to 79,541). There were 138 cases of incident cardiovas-
s range from 0 to 0.15.
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IgG and IgM autoantibodies and apoB-IC and incident
CVD. In the next step, we fitted a model considering both
OxPL/opaB and autoantibodies to OSEs. In Model 3, IgG
Cu-OxLDLs were associated with higher risk of the com-
posite endpoint (HR: 1.18; 95% CI: 1.02 to 1.37, p � 0.028
for 1-SD unit increase) and the individual endpoint of stroke
(HR:1.32; 95% CI 1.11 to 1.58; p � 0.002) (Table 3).
In contrast, in Model 3, IgM MDA-LDL (HR: 0.79; 95%
CI: 0.66 to 0.95; p � 0.010) was associated with a lower risk
of composite CVD, as well as stroke. If IgM MDA-LDL
was replaced by IgM Cu-OxLDL, the respective HR was
0.78 (95% CI: 0.61 to 0.98; p � 0.037). IgG and IgM
apoB-IC were not predictive of events in the multivariable
models (data not shown).
Receiver-operating classification curves and reclassification.
Receiver-operating classification curves for the primary

Figure 2 Association Between OxPL/apoB and Incident CVD (P
in Various Subgroups (Bruneck Study, 1995 to 2010;

Squares and lines are hazard ratios and 95% confidence intervals (CIs) calculated
of individuals in each subgroup. All models were adjusted for age, sex, previous C
(LDL) and high-density lipoprotein (HDL) cholesterol, alcohol consumption, social s
were calculated by inclusion of appropriate interaction terms. BMI � body mass in
PLA2 � lipoprotein-associated phospholipase A2 activity; PY � person years.
endpoint were determined (Fig. 4). With inclusion of the
oxidation markers (OxPL/apoB, Cu-OxLDL IgG, and
MDA IgM), the area under the curve (AUC) increased
from 0.664 (0.629 to 0.697) (FRS only) to 0.705 (0.672 to
0.737). This change, although modest (� AUC 0.042;
0.001 to 0.083, p � 0.048), was statistically significant. The
NRI was 16.3% (2-sided p � 0.0044). Of 138 subjects with
incident CVD, 35 were correctly reclassified to a higher risk
category, 18 were reclassified to a lower category. In subjects
who remained free of CVD [n � 627], 108 were correctly
reclassified to a lower risk category, and 83 were reclassified
to a higher category (categories of 15-year risk: �15%, 15%
to 30%, �30%). Similar to other new biomarkers in vascular
medicine, the NRI was higher in subjects at intermediate
risk (33.2%; n � 305; p � 0.001).

In accordance with these findings, Harrell’s C index
increased from 0.675 to 0.705 (� C index 0.029; �0.005 to

ry Composite Endpoint)
765)

1-SD unit increase in OxPL/apoB ratio. The size of squares reflects the number
stolic blood pressure, smoking, diabetes, ferritin level, low-density lipoprotein
sports activity (Baecke score), and loge-transformed levels of CRP. Interactions
RS � Framingham Risk Score; hsCRP � high-sensitivity C-reactive protein; Lp-
rima
n �

for a
VD, sy
tatus,
dex; F
0.064; p � 0.098), and the corresponding NRI, based on
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the previous 15-year risk categories (�15%, 15% to 30%,
�30%), was 14.0% (2.6 to 25.3) (p � 0.016) (Table 4),
whereas the category-free continuous NRI and the IDI,
which integrates the NRI over all possible cutoffs, were
37.6% (17.6 to 57.6; p � 0.001) and 0.052 (0.027 to 0.076;
p � 0.001), respectively.

The largest discrimination improvement was afforded by
OxPL/apoB (AUC 0.664 to 0.698). Addition of the 2
other markers further increased the AUC from 0.698 to
0.705. In this population, both risk discrimination and
risk reclassification improved significantly upon addition
of all 3 parameters.

Discussion

This study demonstrates the clinical value of oxidation-
specific biomarkers in predicting CVD events and stroke
over a prospective 15-year follow-up in an unselected

Figure 3 Association Between OxPL/apoB and Incident Stroke

Squares and lines are hazard ratios and 95% CIs calculated for a 1-SD unit increa
group. All models were adjusted for age, sex, previous CVD, systolic blood pressu
waist-to-hip ratio, alcohol consumption, social status, Lp-PLA2 activity, sports activ
and urinary albumin. Interactions were calculated by inclusion of appropriate intera
population from the general community. Individually,
OxPL/apoB and IgG Cu-OxLDL autoantibodies predicted
a higher event rate, whereas IgM MDA-LDL (or IgM
Cu-OxLDL) autoantibodies predicted a lower event rate.
Collectively, they significantly improved the predictive ac-
curacy of CVD events in a model adjusting for 16 clinical
variables, including hsCRP. Importantly, they allowed re-
classification of subjects at initial low-, intermediate-, and
high-risk categories, moving a significant number of sub-
jects into both higher and lower categories. Because the
Bruneck population reflects individuals seen in a primary
care setting, broad application of oxidation-specific bio-
markers, in addition to currently available clinical and
laboratory risk factors, would allow optimal risk prediction
and tailored therapies to appropriately match the risk with
the intensity of treatment and follow-up.

These data support the unifying hypothesis that OSEs,
such as OxPL and MDA epitopes, represent DAMPs that

arious Subgroups (Bruneck Study, 1995 to 2010; n � 765)

xPL/apoB. The size of squares reflects the number of individuals in each sub-
oking, diabetes, ferritin level, fibrinogen level, LDL and high-density cholesterol,
ecke score), uric acid level, fasting glucose, and loge-transformed levels of CRP
terms. Abbreviations as in Figures 1 and 2.
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system provides protective responses to them (2,24). Such
DAMPs are strongly present on apoptotic cells (25,26),
infectious pathogens such as pneumococcus (27), and oxi-
dized lipids (28,29). In response to such DAMPs, evolu-
tionary processes have preserved and amplified innate im-
mune effector proteins to bind and neutralize their
proinflammatory effects. The initial evolutionary pressure
may have been derived from the need to clear trillions of
apoptotic cells on a daily basis, which may have been
subsequently amplified by repeated exposure to common
infectious pathogens that share similar epitopes or molecu-
lar mimics (2), as well as oxidized lipids derived from the
diet and those generated in vivo following oxidative stress in
the setting of dyslipidemia and other risk factors. These
innate effector proteins are represented by a variety of
macrophage scavenger receptors, IgM natural antibodies
such as E06, and IgM autoantibodies measured in this study
(29), as well as innate plasma proteins, such as CRP, which
binds not only the PC headgroup of OxPL, but the same
PC (not as part of a phospholipid) on the cell wall of
Streptococcus pneumoniae (30).

Recently, we demonstrated that complement factor H
CFH), which is a primary regulator of the alternative
athway of complement activation, strongly binds to MDA
pitopes (24). The loss of function single nucleotide poly-
orphism Y402 of CFH exhibited limited ability to bind
DA. The Y402 allele is a major risk factor for develop-

Figure 4
Receiver-Operating Classification Curves for the CVD
Endpoint With Inclusion of the Oxidation Markers
(OxPL/apoB, Cu-OxLDL IgG, and MDA IgM) in the AUC

The reference comparison was FRS without oxidation biomarkers included. Cu-
OxLDL IgG � copper-oxidized low-density lipoprotein immunoglobulin-G; MDA
IgM � malondialdehyde immunoglobulin-M; other abbreviations as in Figures 1
and 2.
ent of age-related macular degeneration, and importantly,
loss of function by CFH in binding and preventing proin-
flammatory responses of MDA was directly linked to
enhanced oxidative stress in the retina in a murine model.
This suggests an important link between limiting inflam-
matory responses to MDA and age-related macular degen-
eration, a disease with many common risk factors and
features to atherosclerosis. Overall, this study supports the
notion that OSEs are important factors in immune-
inflammatory diseases such as CVD, and that their mea-
surement may serve as useful biomarkers of CVD risk
assessment and event prediction.

The clinical role of autoantibodies to OxLDL has pro-
gressively evolved since the first demonstration of their
presence in human and animal experimental lesions �20
ears ago (28,31–33). The totality of data suggests that IgG
utoantibodies are positively associated with anatomical
VD, whereas IgM autoantibodies are inversely associated.
his area has been controversial due to mixed results arising

or a variety of factors related to lack of prospective studies,
mall cohorts, lack of adequate power and extended follow-
p. In addition, there has been a lack of standardization of
ntigens to precisely measure their levels in comparative
tudies (34,35). The present study represents the longest
rospective follow-up of any study evaluating such biomark-
rs and demonstrates that increased baseline levels of IgG
utoantibodies to Cu-OxLDL predict higher risk of
ardiovascular events. Whether this increased risk asso-
iation is a reflection of primary antibody mediated risk,
or example, through proinflammatory effects mediated

Risk Reclassification Based on Oxidation Markers(OxPL/ApoB, Cu-OxLDL IgG, and MDA IgM) inPatients Who Experienced a Cardiovascular DiseaseEndpoint (n � 138) and in Those Who RemainedFree of Cardiovascular Disease during Follow-Up(n � 627; 1995 to 2010)

Table 4

Risk Reclassification Based on Oxidation Markers
(OxPL/ApoB, Cu-OxLDL IgG, and MDA IgM) in
Patients Who Experienced a Cardiovascular Disease
Endpoint (n � 138) and in Those Who Remained
Free of Cardiovascular Disease during Follow-Up
(n � 627; 1995 to 2010)

Model Based on
the FRS only

Model Additionally Considering
Oxidation Markers

Frequency (n) Risk
Categories (15-Year
Cardiovascular Disease Risk)

<15%
Risk

15–30%
Risk

>30%
Risk Total

People who remained free of
cardiovascular disease
(n � 465)

�15% risk 162 31 6 199

15–30% risk 95 119 22 236

�30% risk 0 12 18 30

Total 257 162 46 465

People who experienced a
cardiovascular disease
endpoint (n � 138)

�15% risk 16 10 3 29

15–30% risk 20 34 14 68

�30% 0 2 39 41

Total 36 46 56 138

This reclassification table compares a model based on the Framingham Risk Score (FRS) only with
a model considering the FRS and levels of oxidation markers (OxPL/apoB, Cu-OxLDL IgG, and MDA

IgM). The shaded values reflect subjects who were reclassified.

Abbreviations as in Table 1.
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by fragment-dependent events, or is simply a reflection
that such IgGs are a surrogate of the presence of the
enhanced generation of OSEs, cannot be determined
from this clinical investigation.

In contrast, IgM autoantibodies to OSEs were associated
with lower incident CVD event rates and stroke. These data
are in keeping with evolving experimental developments
suggesting that IgM autoantibodies may be atheroprotec-
tive. 1) IgM OxLDL autoantibodies are highest in younger
patients and decline as patients age, when CVD risk is
highest (reviewed in [35]). 2) OSEs represent a dominant,
previously unrecognized target of IgM natural antibodies in
both mice and humans, and �30% of all natural antibodies
bind to model OSEs, atherosclerotic lesions, and apoptotic
cells (36). The high prevalence of such OSE-specific natural
antibodies suggests strong evolutionary pressure in protect-
ing hosts from the proinflammatory effects of OSEs. 3) The
natural antibody IgM E06/T15 has the capacity to block
macrophage uptake of OxLDL, and generation of high
titers of E06 in response to pneumococcal vaccination in
cholesterol-fed LDLR�/� mice results in reduced athero-
sclerosis (27). 4) Direct experimental evidence exists for a
protective role of IgM autoantibodies in several different
murine models of atherosclerosis; for example, the demon-
stration that the complete absence of B-1 cell-derived IgM
led to accelerated atherosclerosis in LDLR�/� mice (37),
nd transfer of B-1 cells capable of secreting IgM into
plenectomized apoE�/� mice was atheroprotective, but
ransfer of B-1 cells incapable of secreting IgM was not
38). This suggests that natural IgM antibodies are
volutionarily selected in nature and play an important
ole in mediating homeostatic functions. In the case of
VD, the presence of circulating IgM may lead to
revention of foam cell formation, as has been shown
ith passive immunization of human antibodies (39), and
eutralization and/or clearance of apoptotic cells and
ther OSEs when generated by oxidative stress (36). In
his way, they provide a beneficial innate immune func-
ion when DAMPs are generated.

Unlike OxLDL autoantibodies that represent indirect
easures of OSEs, OxPL/apoB represents a direct measure

f OSEs in plasma. The measurement of OxPL/apoB has
een now validated in a large clinical database (reviewed in
aleb et al. [8]). OxPL/apoB levels reflect the presence of
xPL on apoB particles and are increased in a variety of

therogenic phenotypes (40,41). OxPL/apoB levels have
een previously shown to correlate with Lp(a). Interestingly,
hey correlate best with Lp(a) in patients with high Lp(a)
evels associated with small apo(a) isoforms, but do not
orrelate well in subjects with lower Lp(a) levels with large
soforms (42). OxPL/apoB, therefore, seems to reflect the

ost atherogenic Lp(a) particles. Because patients have 2
ifferent apo(a) isoforms that are not measured clinically
43,44), the OxPL/apoB measure is a clinically useful

urrogate for these highly atherogenic Lp(a) particles and
ay represent a unifying measure of their cardiovascular
isk.

In this study, the predictive value of oxidation-specific
iomarkers was extended in several ways. 1) The availability
f 2 separate measures over 5 years and their stability over
his time (more reproducible than LDL-C levels [10,40])
llowed us to analyze and report the usual levels of OxPL/
poB. This adds an enhanced level of robustness to the
redictive value. 2) OxPL/apoB was predictive of stroke/
IA as an individual endpoint with a robust HR of 3.6 over
15-year follow-up. Because stroke is an increasing cause of
ortality and morbidity globally, it may serve as an impor-

ant risk stratifier, particularly with the dearth of available
troke biomarkers (45). Such biomarkers will also be needed
ith the increasing aging of populations across the globe. 3)
xPL/apoB remained independently predictive of CVD

ver a prospective 15-year follow-up. 4) The fact that
ubjects in the third tertile of OxPL/apoB were as much
igher risk than subjects in tertiles 1 and 2 may suggest a
hreshold effect of increasing CVD risk in patients with very
igh levels of OxPL/apoB. This needs to be validated in
ccumulating outcomes studies with this biomarker by
lotting OxPL/apoB levels with risk of new CVD events
nd assessing for a threshold in risk prediction. The addi-
ion of OxPL/apoB, IgG, and IgM autoantibodies to the
redictive models allowed enhanced risk prediction, and
mportantly, net reclassification of subjects into lower or
igher risk categories. If these reclassification findings are
onfirmed in larger studies, it may allow clinically meaning-
ul reclassification of primary care subjects into different
ategories, which would have significant public health
mplications from many perspectives, including prevention
f events and cost of treatments. The OxPL/apoB assay has
een recently licensed commercially and will be made
vailable in the near future as a sendout laboratory measure-
ent and as a kit for both clinical and research applications.

tudy limitations. Limitations of this study include that
he subjects were all Caucasian, and these findings need to
e verified in other racial populations.

onclusions

combination of direct and indirect oxidation-specific
iomarkers provide robust, independent predictive value for
VD and stroke events and enhances the ability to reclassify

ubjects into lower or higher risk categories. These biomark-
rs may have clinical utility in a broad range of patients at
isk for CVD.
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