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Identification of subjects at increased risk for cardiovascular events plays a central role in the worldwide efforts to improve prevention, pre-
diction, diagnosis, and prognosis of cardiovascular disease and to decrease the related costs. Despite their high predictive value on population
level, traditional risk factors fail to fully predict individual risk. This position paper provides a summary of current vascular biomarkers other than
the traditional risk factors with a special focus on the emerging 2omics technologies. The definition of biomarkers and the identification and
use of classical biomarkers are introduced, and we discuss the limitations of current biomarkers such as high sensitivity C-reactive protein
(hsCRP) or N-terminal pro-brain natriuretic peptide (NT-proBNP). This is complemented by circulating plasma biomarkers, including high-
density lipoprotein (HDL), and the conceptual shift from HDL cholesterol levels to HDL composition/function for cardiovascular risk assess-
ment. Novel sources for plasma-derived markers include microparticles, microvesicles, and exosomes and their use for current omics-based
analytics. Measurement of circulating micro-RNAs, short RNA sequences regulating gene expression, has attracted major interest in the search
for novel biomarkers. Also, mass spectrometry and nuclear magnetic resonance spectroscopy have become key complementary technologies
in the search for new biomarkers, such as proteomic searches or identification and quantification of small metabolites including lipids (meta-
bolomics and lipidomics). In particular, pro-inflammatory lipid metabolites have gained much interest in the cardiovascular field. Our consensus
statement concludes on leads and needs in biomarker research for the near future to improve individual cardiovascular risk prediction.
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Biomarkers: state of the art
Preventive cardiovascular risk assessment relies on established risk
factors, including smoking, hypertension, dyslipidaemia, and dia-
betes; however, approximately half of the people developing coron-
ary heart disease (CHD) have been classified as having low or

intermediate risk based on current risk algorithms.1 –4 Although bio-
markers seem to be a rather novel research field the term ‘biomark-
er’ was already introduced in 1980.5 In fact, ‘biomarker’ in the broad
sense, being ‘a characteristic that is objectively measured and evalu-
ated as an indication of normal biologic processes, pathogenic pro-
cesses, or pharmacologic responses to a therapeutic intervention’,6
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covers also traditional risk factors that are used for the above-
mentioned risk algorithms. Hence, ‘biomarkers’ will be used in the
following as markers measured in biological specimens, such as cells
or serum.

The clinical value of serological biomarkers for the diagnosis and
prediction of clinical manifestations of atherosclerotic disease has
been assessed in numerous clinical studies. Meta-analyses and re-
views are widely available in international literature summarizing
diagnostic and predictive properties of both, cardiac-specific mar-
kers (e.g. produced/released by the cardiac muscle and hence likely
reflecting coronary atherosclerosis) and non-cardiac-specific mar-
kers (systemic markers such as lipids, creatinine, glycaemia and gly-
cated haemoglobin, essentially reflecting metabolic risk factors). In
spite of the large number of biomarkers that have been tested,
the European Society of Cardiology (ESC) guidelines only recom-
mend the use of troponin for the diagnosis and prognosis in the
management of acute coronary syndromes (ACS),7,8 along with
the assessment of lipid profile, creatinine, and glycaemia. The devel-
opment of high-sensitivity (hs) assays for troponin I and T has im-
proved the diagnostic sensitivity for acute myocardial infarction
(MI), decreased the time to diagnosis and led to quicker rule-out
of myocardial ischaemia. In addition, elevated hs-troponin has
been associated with adverse outcomes in patients with stable
CHD and in the general population. However, troponin does not
have sufficient independent prognostic value to advise systematic
measurements in patients with stable CHD.9 – 12 In fact, in this
condition, the current guidelines do not recommend testing any bio-
markers beyond lipids, creatinine, glycaemia and glycated haemoglo-
bin, adding the organ specific BNP or NT-proBNP only if heart
failure is suspected.9 Specifically, the use of hsCRP or any other no-
vel biomarker is not recommended.7 – 9 However, the number of
routinely measured biomarkers that can be used to predict MI or
presence of clinically silent atherosclerotic disease is rather limited
and systemic markers may have some limitations, because although
atherosclerosis can be considered a systemic disease, in some cases
it may be progressing at different rates in different arterial beds or
individuals depending on variables such as age, ethnicity,13,14 etc.
Thus, tentative new biomarkers need to be robust enough to be
able to indicate progression of disease even if it happens in a relative-
ly small part of the arterial tree.

Guidelines for biomarker use to assess presence of atheroscler-
otic disease in the absence of an acute event are scarce. The reasons
for this may be found in our limited scientific understanding of bio-
markers so far or the described limited added value of biomarkers
on top of the predictive value of traditional risk factors for predic-
tion of adverse events. This is in sharp contrast with biomarker
guidelines for the diagnosis of heart failure where NTpro-BNP is
an accepted standard.15

For the prediction of incident cardiovascular events, markers with
strong potential are mainly associated with lipids and lipoproteins.
For recurrent cardiovascular events, markers are mostly associated
with ischaemia.15 There is an ongoing debate which biomarkers
should be applied in patients with low, intermediate, and high
5- to 10-year risk for MI. For example, the National Academy of
Clinical Biochemistry guidelines from 2009 discussed the use of
the most often used commercially available biomarkers such as
hsCRP and fibrinogen.16 Their conclusion was that there is no

need for further biomarker screening in low-risk patients and in
case of intermediate risk much is left to the discretion of the medical
practitioner.

Biomarkers that reflect the inflammatory state are not recom-
mended for routine use in non-high-risk subjects. Recommenda-
tions for hsCRP screening slightly differ between US and EU
standards. While both American Heart Association (AHA) and
ESC recommend hsCRP measurements in patients with moderate
or unusual CHD risk profile, asymptomatic high-risk patients, and
patients with hypertension categorized as intermediate risk by
Framingham criteria to assess 10-year CHD risk,4,17,18 the AHA
also recommends screening of asymptomatic low-risk patients.17

The clinical value and appreciation of biomarkers may be ham-
pered by many determinants such as intra-individual variability,
lack of tissue specificity, inter-lab variability, analytical sensitivity
and accuracy,19 age, weight, renal function, gender differences,
or differences among ethnicities. Also, progression of athero-
sclerosis may not be homogeneous in different areas, and differ-
ent degrees of peripheral artery disease have been described for
similar degrees of CHD.14 This fact could limit theoretically the
information given by a cardiac biomarker on the progression of
atherosclerosis in other areas and vice versa. Finally, unmonitored
and unaccounted differences in pre-analytical sample handling
(e.g. time from collection to storage, isolation protocol, and
room temperature) and marker stability may be additional limita-
tions. This strongly depends on storage conditions; number of
freeze– thaw cycles, etc., and is molecule specific and thus not
generalizable.20

Moreover, biomarkers with causal involvement (Table 1) are usu-
ally regarded more valuable for risk stratification as they may also be
used in testing drug efficacy or applied as companion diagnostic.
However, Mendelian randomization studies have shown that
some of the most widely applied biomarkers for cardiovascular dis-
ease are not causally related with disease progression.21,22

Thus, overall there is no consensus regarding the value of many
current, mostly ‘serological’ biomarkers for risk prediction of MI
or stroke. In the last years, new approaches are being used to search
for novel biomarkers. These approaches have two distinctive fea-
tures. First, they do not focus only in proteins, but they also assess
other molecules (Table 2). Second, they are able to analyse large
numbers of these molecules instead of a few of them, as happened
with the traditional approaches. In fact, large EU-granted programs
are using these new technologies to search novel biomarkers.
Among these are the EPIC-CVD study23 and the Biomarker for Car-
diovascular Risk Assessment in Europe (BiomarCaRE). The latter is
a European collaborative research project that integrates clinical
and epidemiological biomarker research throughout Europe and va-
lidates the biomarker effectiveness in large, well-defined primary
and secondary prevention cohorts from 13 European countries.24

These studies will provide an overview of the clinical value of bio-
markers including geographical differences of outcomes.

In the following, we will provide an overview of current and future
biomarkers, changing paradigms and novel technologies, including
their differences and pros and cons (Table 2). A particular focus
will be on the discovery and measurements of biomarkers applying
new –omics technologies. Although the relevance of genetic var-
iants should not be underestimated, they cannot be held responsible

I.E. Hoefer et al.2636



for the vast majority of heredity (�90%) in cardiovascular
medicine25,26 and are therefore beyond the scope of this review.

Before going into details of specific technologies, it should be
noted that general 2omics study design follows similar principles

as standard epidemiology. Current 2omics technologies can be
directly applied in existing large epidemiological sample collections.
Quantitative 2omics that can provide marker concentrations
in physiological units can be analysed using the same statistical
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Table 1 Potential causal involvement in disease progression of discussed novel circulating biomarkers for
atherosclerosis

Biomarker Causality Source or anticipated mechanism of action

(High-sensitivity) troponin None Consequence of myocardial necrosis

(NT-pro) BNP None Consequence of myocardial damage

HDLc Causal factor? Insufficient evidence that HDLc-raising therapeutic
interventions are beneficial187

HDL-function Likely causal factor Capacity to exhibit cardioprotective effects
(e.g. cholesterol efflux)40,187

Endothelial or leukocyte microparticles Both Consequence of cellular damage and/or regulated
mechanism of inter-cellular communication44,47–51

Cardiac or endothelial miRNAs Both Consequence of cellular damage and/or regulated
mechanism of inter-cellular communication119,120

HSP-27 Causal factor Atheroprotective protein, low plasma levels are associated
with cardiovascular disease188–192

sTWEAK No evidence shown Member of the tumor necrosis factor superfamily, low plasma
levels are associated with cardiovascular disease193–197

Eicosanoids Causal factor Enhanced synthesis of inflammatory lipid mediators198,199

Polyunsaturated cholesteryl esters with
long-chain fatty acids

Likely causal factor Thought to contribute to foam cell formation and
progression of atherosclerosis200

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Comparison of novel circulating biomarkers for atherosclerosis and current technologies used for their
identification

Type of
biomarker

Screening technology Sample
throughputa

Limitationsa Future challenges

HDL HPLC, NMR Low to high Single biomarker approach, limited
predictive value

To identify predictive components of HDL
(e.g. lipoproteins), shift towards
alternative indexes such as particle size,
subclass distribution, HDL functionality

Microparticles Flow cytometry Low Lack of standardized measurement To define measurement standards and
develop novel analytical tools to reduce
lower particle size limit of detection

miRNA PCR-based array Intermediate Lack of validated internal controls for
PCR-based approaches, sensitive to
confounding factors, e.g. medications

To improve sensitivity of more specific
technologies without amplification steps
(e.g. probe-based arrays) for
low-abundant miRNAs

Proteins MS-based proteomics Low Requirement of large sample amount and
complicated sample preparation

To improve sensitivity and simplify
pre-analytical sample preparation steps

Metabolites MS- or NMR
spectroscopy-based
metabolomics

Intermediate to
high

High per-sample cost of detailed
MS-based analysis detecting many
metabolites vs. cost-effective
NMR-based high-throughput analysis of
abundant biomarkers

To improve cost-effectiveness and sample
throughput of MS-based approaches,
combination of NMR and MS in large
population-based cohorts

Lipids MS-based lipidomics Intermediate Mostly, targeted analysis of selective lipid
classes and metabolites involved in
known pathways

To perform holistic epidemiological studies
including all lipid classes

MS, mass spectrometry; NMR, nuclear magnetic resonance spectroscopy.
aReferring to currently used technologies.
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methods, without requiring special knowledge on the underlying
technology, as any other biomarker assay data.

High-density lipoprotein: shifting
paradigms
The classically named high-density lipoproteins (HDLs) are clinically
measured in plasma by analysing the amount of cholesterol con-
tained in the particles, i.e. HDL cholesterol (HDLc). HDLc has
been epidemiologically and clinically linked to cardiovascular disease
presentation with low HDLc independently associated to high car-
diovascular risk,27,28 whereas high levels were related to cardiovas-
cular disease protection in the primary prevention setting.

High-density lipoprotein particles are complex lipoproteins and
the pioneering studies evaluating the HDL vasculo-protective
effects did not use HDL carrying high levels of cholesterol but
used protein rich-HDL (nascent ApoA1-rich lipoprotein)29,30 or
ApoA1 overexpression.31 These studies showed that HDL exerted
atheroprotection. A key role of HDL is to promote cholesterol
efflux and reverse cholesterol transport from the periphery to
the liver. High-density lipoprotein cholesterol efflux capacity was
recently shown to inversely correlate with the incidence of cardio-
vascular events in a population-based cohort, suggesting its potential
use as a novel biomarker for atherosclerosis.32 A plethora of add-
itional potential beneficial vascular properties have also been con-
sistently attributed to HDL including antioxidant, anti-apoptotic,
anti-inflammatory, anti-thrombotic/fibrinolytic, and vasodilatory ef-
fects.33 The variable composition of HDL has emerged as the pos-
sible cause of these diverse functional effects. Indeed, the HDL
particles not only contain ApoA1 and transport cholesterol but
they are carriers of .85 proteins,34,35 numerous lipid species and
small molecules.

Even with this complex nature, HDLc is still a good biomarker in
the primary prevention setting. A recent study in over 35 000 pa-
tients has shown that for every 5 mg/dL increase of HDLc the risk
of hospitalization for cardiovascular disease decreased 6%. In add-
ition, if the levels of HDLc increased 6.5 mg/dL cardiovascular dis-
ease decreased 8%; on the contrary, if HDLc decreased 6.5 mg/dL
cardiovascular risk increased 11%.36 In fact, in acute percutaneous
coronary intervention studies for every 5 mg/dL increase in HDLc
concentrations, the risk of periprocedural acute MI decreased by
20%.37 However, in some patient populations with established
chronic coronary artery disease or chronic kidney disease the in-
verse association between HDL cholesterol levels and cardiovascu-
lar events is attenuated.38,39

Recent studies have revealed that the occurrence of coronary dis-
ease is associated with a reduction in HDL antioxidant and anti-
inflammatory potential indicating the variable and complex nature
of these particles40 that are easily remodelled during their metabolic
life span. Interestingly, recent data with drugs developed to specific-
ally raise HDLc levels have questioned the assumed protective role
of raising the HDL particles carrying high levels of cholesterol.41 Hu-
man genetic analysis has also shown that genetic alterations of HDL
cholesterol levels are not uniformly associated with the risk of cor-
onary disease.22

In summary, HDL particles express a multitude of molecular
complexity and the measurement of cholesterol levels in particles

alone is not the only biomarker of HDL function. Although HDLc
is still used clinically in primary prevention, new tests to better
measure HDL functionality42 including cholesterol efflux capacity32

are being actively sought.

Microparticles
Microparticles (MPs; often also called microvesicles) belong to the
family of extracellular vesicles released from activated or apoptotic
cells. Microparticles (�100–1000 nm in diameter) stem from the
cellular plasma membrane, whereas exosomes, which are
,100 nm, originate from intracellular multivesicular bodies (for re-
views, Refs 43–46). However, MPs are not only surrogate markers
of cellular injury as they can affect the function of target cells and
therefore influence the course of cardiovascular diseases (for re-
views, Refs 44,47–51).

Microparticles of different cellular origin, as well as exosomes, cir-
culate in human plasma and other body fluids.52– 54 The major frac-
tions in plasma stem from platelets, red blood cells, and leukocytes,
whereas in most studies circulating endothelial MPs are less abun-
dant.52 So far, the cellular origin of circulating exosomes remains
elusive, although their role in inter-cellular signalling and carriers
of RNA, especially micro-RNAs (miRNAs), receives increasing
attention.55,56

Detection of MP subpopulations in human plasma has gained in-
creasing interest in the past two decades for their potential as bio-
marker. Considered as remnants of parental cell injury, they are
easily accessible for measurement in the circulation. Their identifica-
tion relies on the presence of externalized phosphatidylserine and
specific markers from the parental cell membrane.57 Plasma MP le-
vels increase in subjects with cardiovascular risk factors and in pa-
tients with atherosclerosis or other cardiovascular disorders (for
reviews, Refs 58–61). Interestingly, local levels of circulating MPs in-
crease in culprit coronary arteries of patients with ST-segment ele-
vation MI,62 and even further in those from patients with sudden
cardiac death,63 suggesting that changes in circulating MP levels re-
flect an increased release of microvesicles in atherosclerotic vascu-
lar disease. Finally, patients on lipid-lowering treatment with statins
have lower numbers of circulating MPs despite similar plasma chol-
esterol levels.64

Microparticle quantification remains challenging; the pros and
cons of each method have been reviewed previously.65,66 Standar-
dized methods are being developed and will certainly foster the ap-
plication of MP assays in clinical settings. Both the standardization of
the pre-analytical steps and the sensitivity of MP flow cytometry
analysis have greatly improved in the past decade67 – 75 resulting in
numerous investigations of the potential benefit of using plasma
MPs as biomarkers.

So far, two specific subpopulations of circulating MPs have re-
ceived most attention for use as CHD biomarkers: endothelial
and leukocyte MPs.

Plasma levels of endothelial MPs expressing either CD144 or
CD31 inversely associate with the degree of endothelium-
dependent vasodilation in humans.76 – 81 Therefore, they reflect
acute or chronic endothelial dysfunction and vascular injury in gen-
eral. Elevation of endothelial MP subsets predicts atherosclerotic
plaque instability in patients undergoing endarterectomy.82
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Furthermore, endothelial MPs expressing either CD144, CD31 or
CD62E are independent predictors of cardiovascular outcome in
patients with heart failure,83 coronary artery disease,83,84 end-stage
renal failure,85 stroke history,86 or other cardiovascular dis-
eases.83,87 Combining endothelial MP detection with classical bio-
markers strategy improves risk stratification for cardiovascular
events in patients at risk of CHD.88 No data are available yet in
the general population regarding the prognostic value of circulating
endothelial MPs.

Levels of circulating CD11a expressing MPs associate with
atherosclerotic plaque burden in asymptomatic patients.89 In
patients with ACS, CD11b+ MPs inversely associate with the early
recurrence of cardiovascular events, possibly because these MPs are
consumed during thrombus formation.90 Recent studies demon-
strate that plasma MPs might be useful to assess the composition
and the vulnerability of atherosclerotic plaques. In patients with se-
vere carotid stenosis (.70%), plasma levels of leukocyte CD11b+

CD66b+ MPs are associated with plaque instability.91 In patients
with familial hypercholesterolemia, levels of CD45+CD3+ lympho-
cyte MPs help to discriminate lipid-rich plaques from fibrous
lesions.92

Taken together, these findings indicate that MPs from endothelial
cells and leukocytes could provide useful tools to identify patients at
high risk for future cardiovascular events. Furthermore, the complex
MP composition (proteins, lipids, and nucleic acids) might be an in-
teresting source for –omics.93–96

Micro-RNA
Micro-RNAs are small non-coding RNAs that control gene expres-
sion by binding to target mRNAs, thereby inducing mRNA degrad-
ation or repression of protein translation. Besides their important
intracellular functions and potential value as therapeutic tar-
gets,97 –99 extracellular miRNAs have also been detected in various
body fluids including the blood. The levels of circulating miRNAs are
modulated in disease states and, therefore, yield potential value as
cardiovascular disease biomarkers.

Initially, researchers found elevated levels of miRNAs that are
highly expressed in the myocardium (‘cardiac miRNAs’) in acute
MI patients, e.g. miRNA-1, miRNA-133, miRNA-208a/b, and
miRNA-499.100 – 104 Meanwhile, multiple additional circulating miR-
NAs were shown to be enhanced following MI or angina pec-
toris.101,103,105 – 114 Several cardiac-enriched miRNAs accumulate
in plasma early after MI or transcoronary ablation of septal hyper-
trophy115 with similar kinetics as conventional cardiac injury bio-
markers.103,105,115 Their increase in transcoronary gradients of
ACS patients104 suggests that they are indeed released from
damaged cardiac myocytes. Circulating cardiac miRNAs were pro-
posed to improve the diagnostic value, when combined with trad-
itional markers like high sensitive troponin T,116 and circulating
cardiac miRNAs were associated with poor prognosis in first
studies.117 More recently, combinations of miRNAs, such as
miRNA-132, miRNA-150, and miRNA-186, were shown to facilitate
the diagnosis of unstable angina118 and changes in miRNA-126,
miRNA-223, and miRNA-197 expression predicted subsequent
MI.96 Recent studies revealed that miRNAs also circulate within
microvesicles and may contribute to cardiac pathophysiology

by targeting vascular and cardiac cells119,120 and can predict subse-
quent heart failure.121

Less is known about the use of circulating miRNAs as biomarkers
to detect early stages of atherosclerosis or atherosclerotic plaque
characteristics. Patients with stable coronary artery disease exhibit
reduced levels of the endothelial cell-enriched and vasculo-
protective miRNA-126 and members of the miRNA-17-92a clus-
ter.122 Lower levels of circulating miRNA-126 were also observed
in patients with diabetes.123 Moreover, the smooth muscle-enriched
miRNA-145-5p was significantly lower in patients with CHD.122

Circulating miRNAs may thus have the potential to reflect endothe-
lial function or provide non-invasive insights into plaque vulnerabil-
ity. Recent evidence suggests that the passenger strands of miRNAs
that normally undergo degradation also deserve attention as poten-
tial biomarkers, since they have been reported to regulate endothe-
lial regeneration98,119 or circulate in fibroblast-derived exosomes to
target cardiac cells.124

However, miRNA measurements currently depend on PCR,
making them sensitive for confounding factors and normalization
is challenging due to the lack of valid house-keeping miRNAs. Fur-
thermore, the origin of miRNAs cannot be unequivocally deter-
mined as many circulating miRNAs derive from platelets125 and
the discrimination between vessel wall- and platelet-derived miR-
NAs is difficult if not impossible. Moreover, several pharmacological
interventions, such as platelet inhibitors and heparin were shown to
affect miRNA measurements.125 –127

While circulating miRNAs may be promising CHD biomarkers,
the field is still in its infancy and is challenged by confounding factors
that interfere with miRNA measurement. Solutions to current
methodological problems may include: (1) the use of multi-miRNA
panels, (2) technical improvements in miRNA measurements (i.e.
replacing PCR by hybridization technologies). Large-scale studies
to document the ability of circulating miRNAs to detect early ath-
erosclerosis or plaque vulnerability remain to be performed.

Proteomic technologies
Proteomic technologies allow comparing the expression of hun-
dreds or thousands of proteins from two biological specimens, in-
cluding fluids, tissue, or cells. For instance, arteries with and
without atherosclerosis can be compared or the effect of different
therapies can be assessed.128 Over the past decade, proteomics ana-
lyses have evolved from protein separation by two-dimensional
electrophoresis to mass spectrometry (MS)-based approaches.128

At present, a variety of proteomic platforms are available. Their
selection depends on the specimens and the type of proteins to
explore (for reviews, Refs 128–130).

In general, there are two MS approaches: First, the untargeted
discovery approach, in which samples are analysed without a priori
assumptions and peptides are prioritized for fragmentation based
on their relative abundance. This approach is limited by its bias to-
wards abundant proteins since there is currently no technological
platform to resolve the entire human plasma proteome.130,131

The result of an untargeted discovery proteomic experiment is
a list of proteins, among which potential biomarker candidates are
selected according to their highest statistical significance and rele-
vance. Second, targeted MS offers an alternative approach, in which
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a pre-selected panel of proteins is measured with high precision.
This method is termed using multiple reaction monitoring and
was selected by Nature Methods as technology of the year in
2012.132

Although multiple reaction monitoring offers better sensitivity
than untargeted proteomics, higher abundant plasma proteins are
still more readily quantified and for now antibody-based methods
remain the method of choice for the quantitation of less abundant
proteins (i.e. cytokines, chemokines, growth factors, etc., which are
present at picograms to nanograms/mL plasma). A combination of
an untargeted with a targeted approach provides the most compre-
hensive strategy to discover new biomarkers by proteomics.

Blood proteomics
Blood is an excellent source for the discovery of new biomarkers in
atherosclerosis, as it exchanges molecules with the arterial wall and
several blood cell populations are causally involved in atheroscler-
osis. However, proteomic studies of plasma or serum are compli-
cated by the presence of high-abundant proteins, such as albumin
or immunoglobulins, that may mask important biomarker candi-
dates present at lower concentrations.128,131 By using adequate
methods to remove these high-abundant proteins, different candi-
date biomarkers have been identified.133,134 Nevertheless, this ap-
proach is not without risk as removing albumin from the sample
may also remove albumin bound proteins with potential value.

The proteome of circulating cells may yield relevant information
comparing either patients with different clinical pictures of
atherosclerosis or testing the effect of anti-atherosclerotic drugs
in subjects with this disorder.135,136 The potential value of post-
translational protein modifications as biomarkers of CVD can also
be evaluated by proteomic analysis, as reported in blood of ACS pa-
tients.137,138 A different study used nuclear magnetic resonance
(NMR)-based technology to identify a protein glycan that is asso-
ciated with incident CHD.139 Finally, urine may be a potential source
of biomarkers as it contains proteins filtrated from plasma with
low-molecular weight that can be analysed avoiding excessive
manipulation.140

Proteomics of atherosclerotic lesions
Another complementary approach is to study whole tissue speci-
mens. For instance, patients with higher atheroma content of osteo-
pontin are at increased risk of developing cardiovascular events.141

However, studying the whole tissue could result in identification of
structural proteins not involved in atherosclerosis. In this case, the
study of the secretome may be instrumental.142 In this procedure, a
tissue specimen is cultured, allowing it to release molecules into the
medium, mimicking the secretion of biomarkers from atheroma into
the blood. Thereafter, the supernatant is analysed avoiding the pres-
ence of structural proteins. Comparing the secretome of carotid
endarterectomy specimens and healthy arteries, low plasma levels
of HSP-27 (Heat Shock Protein-27) and sTWEAK (soluble tumour-
necrosis factor-like weak inducer of apoptosis) have been identified
as diagnostic markers of atherosclerosis,143,144 although their prog-
nostic value remains controversial.145 – 147 Another possibility is to
assess the effect of drugs when added to the cultured tissue.148

Moreover, retrieved coronary thrombi of MI patients have been

recently analysed by proteomics, revealing potential new candidates
for biomarkers of atherothrombosis.149,150

Proteomic approaches allow screening to detect differences in
protein expression between different biological specimens. Al-
though this approach is not free of limitations, it has considerably in-
creased our ability to discover novel biomarkers of atherosclerosis
as untargeted or targeted protein analysis can be performed by MS
without a priori assumptions and without the need for the availability
of good antibodies to a specific protein of interest.

Metabolomics
Detailed profiling of metabolic status, termed metabolite profiling
or metabolomics, can provide insights into the molecular mechan-
isms underlying atherosclerosis.151 – 156 The quantification of
large numbers of circulating metabolites across multiple pathways
may also identify metabolic changes prior to the onset of overt
disease, and hereby potentially lead to earlier and more accurate
identification of individuals at high cardiovascular risk.156 – 158 Two
technological platforms are used: nuclear magnetic resonance
spectroscopy156 and MS.158,159 The former has an advantage in
throughput but is limited in sensitivity. Vice versa, MS can identify
many more metabolites but often with limited throughput.

Coronary heart disease biomarkers
Technological improvements in sample throughput now allow for
metabolite profiling of extensive epidemiological cohorts, rather
than case–control settings, to enhance biomarker discovery and
replication.160,161 Metabolite profiling has been successful in identify-
ing biomarkers for the development of type 2 diabetes.162–167 Circu-
lating biomarkers for diabetes are more directly associated with the
disease than those for atherosclerosis.168,169 However, few metabol-
ite biomarkers have been consistently associated with future cardio-
vascular events across multiple studies.154,156–158,170,171

Many common systemic metabolites, such as amino acids show
consistent associations in properly powered epidemiological stud-
ies. For example, it has been demonstrated that there are prospect-
ive associations of some amino acids with carotid intima-media
thickness, a subclinical measure of atherosclerosis.156,172 Nuclear
magnetic resonance-based metabolite profiling in large prospective
cohorts recently identified phenylalanine, monounsaturated and
polyunsaturated fatty acids as biomarkers for CHD risk.171 The as-
sociation strengths of some of these new biomarkers, as of phenyl-
alanine, are comparable with those of established risk factors, e.g.
LDL cholesterol, and they remain predictive even when adjusted
for standard lipids and glycaemic traits.156,171

Key issues in metabolic profiling in
epidemiology
Quantitative metabolic profiling can aid biomarker discovery in an
unbiased and unsupervised manner by providing molecular informa-
tion across multiple pathways: all metabolic measures can then be
separately tested for the potential disease association or incidence.
This should be followed by appropriate independent replication of
the candidate biomarkers identified in the discovery cohort. Unfor-
tunately, the promise of metabolomics in biomarker discovery has
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not been fully realized; even though various papers have been pub-
lished, there is very little consistency and rigor in the metabolomics
works in this area as recently pointed out.173 We call for a stringent
attention to statistics and replication in the field of metabolomics to
strengthen the scientific value of the work, irrespective of the ana-
lytical platform used. Particularly when aiming for clinical applica-
tions, recent frameworks are recommended to strengthen the
methodological rigour and quality for the prediction models.174,175

Lipidomics
Lipidomics is a specific subset of metabolomics, which refers to a
systems-based study of all lipids.176 This approach could potentially
go beyond the analysis of cholesterol and triglycerides for assess-
ment of cardiovascular risk and response to therapy. In addition,
lipidomics can be used to detect several lipid mediators involved
in cellular homeostasis as well as in inflammation initiation and
resolution177 and whose circulating levels may give insight into
pathophysiological processes of atherosclerosis. However, the sim-
ultaneous detection of lipids is impeded by the heterogeneity of the
lipid molecules reflecting different metabolic pathways originating

from structurally different lipid species. The theoretical number of
different molecular lipid species has been estimated to 180 000.178

To facilitate the lipid classification, the Lipid Maps consortium179 ca-
tegorized the human plasma lipidome into six major classes, namely
fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol
lipids, and prenol lipids.

In addition to structural diversity, it should also be considered
that the concentrations may differ between different lipid classes,
which also should be taken into account when using lipidomics for
the identification of circulating biomarkers. For example, several of
the eicosanoids are active at nanomolar concentrations at specific
G-protein-coupled receptors,180 and the local response to these
lipid mediators at the site of an atherosclerotic lesion may not ne-
cessarily be reflected in their circulating levels. Selective lipidomic
analysis of eicosanoids released by carotid atherosclerotic lesions
has characterized the metabolites of 5-, 12-, and 15-lipoxygenase
as the predominant eicosanoids produced by the atherosclerotic
lesion, compared with cyclooxygenase products. For example,
12-hydroxyeicosatetraenoic was the most abundant eicosanoid,
at levels ≈40-fold greater compared with a prostacyclin
metabolite.181

Figure 1 Circulating biomarkers for cardiovascular disease. The transcriptome, proteome, metabolome, and lipidome analysis of cells, blood,
and serum is increasingly identifying circulating biomarkers for cardiovascular disease originating from the cellular and extracellular compartments.
These include high-density lipoprotein particles and high-density lipoprotein-related proteins (e.g. apoA1), small circulating particles enveloped in
cell membranes, such as microparticles (which stem from the cellular plasma membrane) and exosomes (which derive from intracellular multi-
vesicular bodies such as endosomes), intracellular molecules such as short regulatory sequences of gene transcription (miRNA), as well as pro-
teins, peptides and lipid metabolites. These might circulate freely or be carried by microparticles and exosomes.
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Broader lipidomic analyses have identified members of several
different lipid classes in human atherosclerotic lesions.182,183 Com-
paring the local lipidome of atherosclerotic lesion with that ob-
served in plasma has revealed that polyunsaturated cholesteryl
esters with long-chain fatty acids and certain sphingomyelin species
exhibited the greatest relative enrichment in plaques compared with
plasma and formed part of a lipid signature for vulnerable and stable
plaque areas within the same lesion.158,184 Despite these differences
in terms of lipid profiles within atherosclerotic plaques and the plas-
ma lipidome, qualitative and quantitative characterization of circulat-
ing lipid species by means of lipidomics may offer additional tools for
patient risk stratification. For example, the assessment of 305 differ-
ent plasma lipid species added incremental value in classifying coron-
ary patients and matched healthy controls.185 In addition, multiple
lipid species were shown to distinguish unstable from stable coron-
ary disease.185 However, some of the reported associations were
rather unexpected, i.e. the inverse association of cholesteryl esters
with unstable lesions, and could potentially have been confounded
by the higher proportion of statin and heparin use in patients with
unstable compared with stable coronary disease. Those initial find-
ings in patient cohorts were recently extended by the assessment of
135 lipid species in a prospective population-based study.158 The lat-
ter study highlighted that a shift in the fatty acid chain length of cho-
lesteryl esters, sphingomyelins, and triacylglycerides exhibited the
strongest and most consistent association with cardiovascular dis-
ease. A similar fatty acid chain length shift has previously been linked
to the risk of type 2 diabetes.163

The top scoring lipids significantly improved the risk discrimin-
ation for cardiovascular disease during a 10-year follow-up, hence
providing a first piece of evidence for a predictive value of circulating
biomarker identified by means of plasma lipidomics.158 Finally, the
possibility of using lipidomics to predict response to lipid-lowering
therapy has received some support by studies of, for example, sta-
tins and fibrates.186

Consensus statement
For decades, the endeavours to find new biomarkers for prediction,
prevention, diagnosis, and prognosis of cardiovascular events have
focused on a rather small number of molecules. Technological im-
provements in automated analytical methodologies, for example
in terms of sensitivity and sample throughput, have revolutionized
biomarker research in the past 10 years. Integration of multiple
complementary platforms, such as micro-RNA, transcriptome,
proteome, metabolome, and lipidome analysis, allows unpre-
cedented biological details across multiple pathways and is leading
to a conceptual shift from individual markers to multi-marker panels
for cardiovascular risk prediction (Figure 1). However, the vast
amount of data generated also calls for bioinformatics expertise
to handle and combine the data. In the case of new technologies,
it is also essential to critically assess their advantages and disadvan-
tages, and keep their potential limitations in mind (Table 2). For ex-
ample, the sensitivity of a method inherently affects the biomarker
panel obtainable. Reliable interpretation of improved molecular de-
tails may also call for more stringent analytical and clinical sample
quality standards—collection and storage conditions safe for trad-
itional biomarkers may not be such for some new biomarkers

and, say, the molecular effects of diet and medication can be more
noticeable than with traditional biomarkers. Explanatory research
related to technical, analytical, and practical aspects of new tech-
nologies is therefore essential and expected to increasingly com-
mence in the near future. Ultimately, the application and value of
new candidate biomarkers will depend on their predictive power
over traditional risk assessment, on their reproducibility in multiple
cohorts and on the practicalities and the cost-effectiveness of their
integration into clinical routines and laboratories.
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