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Glucose-Induced Suppression of Atrial Natriuretic Peptide

by MicroRNA-425*

Temo Barwari, MD, Philipp Skroblin, PuD, Manuel Mayr, MD, PuD

ne of the most challenging aspects of

obesity is its link to “metabolic syndrome,”

when abdominal obesity is accompanied by
high fasting blood glucose, low levels of high-density
lipoprotein cholesterol, high levels of triglycerides,
and elevated blood pressure. With rising obesity
rates, metabolic syndrome is likely to become more
common in the years ahead (1). Although progress
has been made in identifying this syndrome’s indi-
vidual components, their interplay across several
organ systems is not well understood; that is, the
near-linear relationship between body mass index
and blood pressure. Obesity is often recognized as
a predictor of treatment-resistant hypertension (2).
One of the main endocrine pathways that has
been implicated involves natriuretic peptides (3).
Natriuretic peptides exert their antihypertensive
effects predominantly by inducing natriuresis but
have additional effects beyond blood pressure regu-
lation. For example, an antihypertrophic effect,
independent of blood pressure, was observed in
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the heart (4). Other reports demonstrate the ability
of atrial natriuretic peptide (ANP) to promote lipol-
ysis (5) and activate the brown fat thermogenic pro-
gram (6). Notably, levels of natriuretic peptides
are lower in obese subjects and patients with type
2 diabetes (7).

Genetic studies demonstrated that the single
nucleotide polymorphism rs5068 (A/G) is most
strongly associated with plasma ANP levels. Carriers
of the minor G allele are less obese, have a lower
risk of hypertension, and a decreased incidence of
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cardiovascular events (8). In this issue of the Journal,
Arora et al. (9) expand upon their previous finding
that the variant rs5068 (A/G) influences ANP pro-
duction (10). NPPA, which encodes for ANP, is a target
of micro ribonucleic acid (miRNA)-425 (miR-425).
miR-425 is predicted to bind the sequence spanning
1s5068 for the A, but not the G allele (Figure 1).
Overexpression of miR-425 in human cardiomyocytes
derived from induced pluripotent stem cells reduced
NPPA messenger RNA and N-terminal (NT)-proANP
protein levels (10).

In the present study, Arora et al. (9) explored
miR-425 as a link between glycemia and ANP
expression, thereby providing a potential explana-
tion for lower NT-proANP plasma levels after food
consumption (11). The authors demonstrated that:
1) a carbohydrate challenge lowered plasma ANP,
but not brain natriuretic peptide; 2) high glucose
increased miR-425 and decreased NPPA expression
in human cardiomyocytes derived from embryonic
stem cells; 3) a glucose stimulus enhanced the
transcription downstream of the miR-425 promoter
in HepG2 cells, a human liver carcinoma cell line;
and 4) miR-425 expression was nuclear factor
kappa B (NF-kB)-dependent in H9c2 cells, a rat
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FIGURE 1 Association of miR-425 With ANP
miR-425
A seed (nt 2-8)
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(DNA: A, RNA: U) , ,
5' gucucugcugcauuuGUGUCAUc 3 ' NPPA
3'aguugcccucacuagCACAGUAa 5' hsa-miR-425-5p
rs5608
minor allele : | | | | | |
(DNA: G, RNA: C)
5' gucucugcugcauuuGUGUCACc 3 ' NPPA
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miR-425 NT- miR-425 NPPA in RA/RV inRV
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Causality? miR-425 miR-425 Causality?
(A) In the base pairing between microribonucleic acid 425 (miR-425) and the 3’ untranslated region (3’ UTR) of human NPPA, the
red box indicates the seed sequence (position 2 to 8). Yellow = variants of rs5068. (B) The in vitro and in vivo effects as observed
in the study by Arora et al. (9). DNA = deoxyribonucleic acid; hESC-CM = human embryonic stem cell-derived cardiomyocyte;
NF = nuclear factor; NT-proANP = N-terminal pro-atrial natriuretic peptide; RA = right atrium; RNA = ribonucleic acid; RV = right
ventricle.

cardiomyoblast cell line (Figure 1). Importantly,
the human, but not the rodent, NPPA gene was
a target of miR-425. By using transgenic mice
carrying the human NPPA gene (NPPA'/* mice),
the authors provided in vivo evidence for an in-
verse association of miR-425 and human NPPA
expression in the right ventricle after glucose
administration.

Key questions remain unanswered: Can inhibition
of endogenous miR-425 attenuate the glucose-
induced decrease in NPPA transcription or are miR-
425-independent mechanisms responsible for regu-
lating NPPA levels upon glucose stimulation? The
latter could have been addressed by determining
whether the endogenous mouse NPPA levels were
unchanged after the glucose gavage. Moreover,
miRNA targets can change depending on the cell
context. Does inhibition of endogenous miR-425
result in a similar rise of ANP secretion in

all cardiomyocyte-like cells? It remains unclear
whether miR-425 is associated with cardiometabolic
phenotypes in mice as observed by targeting other
miRNAs (12). No data were included on metabolic
parameters, blood pressure, and cardiac function of
NPPA'"/* mice.

A direct effect of endogenous miR-425 on ANP
expression levels should have been confirmed in vitro
and in vivo, to rule out a possible contribution by
other miRNAs. For example, miR-103 and -107 are
expressed in the heart (13), and are predicted to target
the human NPPA gene. Expression levels of miR-103
and 107 are increased in livers of obese mice and
regulate insulin sensitivity (14). A 20% to 30% in-
crease of miR-425 expression was observed in the
right atria and the right ventricles after NPPA'™/* mice
were gavaged with 2 g/kg glucose (9). The authors
inferred that the concurring decrease of human NPPA
expression in the right ventricle was the result of



JACC VOL. 67, NO. 7, 2016
FEBRUARY 23, 2016:813-6

FIGURE 2 MiR-425 and ANP Levels in Cardiac Tissue
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Atrial natriuretic peptide (ANP) (A) and microribonucleic acid 425
(miR-425) (B) expression levels were determined by deep RNA
sequencing of cardiac tissue from nonfailing (NF) patients, from
patients with ischemic cardiomyopathy (ICM), and from patients
with nonischemic cardiomyopathy (NICM) pre- and post-left
ventricular assist device (LVAD) implantation, respectively (15).
*p < 0.05, **p < 0.01 compared with NF patients.

increased miR-425 levels, but presented no direct
evidence that this modest change of miR-425 can
account for the effects of glucose administration on
NPPA expression.

Unlike ANP that is predominantly expressed in
the atria, miR-425 expression was observed in
several tissues, including liver and pancreas.
MiR-425 expression levels in the myocardium are

relatively low (15) and similar in atrial and
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ventricular tissues (10). The marked increase in
ANP expression in cardiac tissue of heart failure
(HF) patients (15) was associated with a compen-
satory rise in miR-425 levels (Figure 2). Unloading
by a left ventricular assist device reduced ANP
levels in nonischemic HF patients with a corre-
sponding reduction in miR-425 expression. Thus, in
patients with advanced HF, miR-425-independent
mechanisms appear to be at work, and miR-425
might fine tune, rather than determine, levels of
ANP expression.

One of the recent landmark clinical trials in car-
diovascular disease evaluated a neprilysin inhibitor,
targeting the endopeptidase that degrades the
natriuretic peptides (among others), which was
chemically linked to an angiotensin receptor blocker
(16). The impressive reduction of hospitalization for
HF, as well as death from cardiovascular causes,
might be explained, at least in part, by increasing
ANP levels in the intervention group. Given this
emerging new gold standard in clinical care, it is
questionable whether miR-425 inhibitors would have
therapeutic potential for raising ANP (10). Pharma-
cological modulation of miRNA expression can be
successfully achieved (17). However, miRNA thera-
peutics face major challenges in that single base
changes may profoundly affect toxicology, and off-
target effects can occur due to the ubiquitous
expression of most miRNAs. Also, there are diffi-
culties in establishing the correct dosing regimen,
demonstrating target engagement, and ensuring
efficient delivery, in particular to the heart. Oligo-
nucleotides tend to accumulate in the liver and the
kidney. This build-up could become a concern during
prolonged treatment for chronic conditions, such
as metabolic syndrome.

In summary, Arora et al. (9) presented evidence
for a mechanism whereby glucose intake induced
miR-425 expression, which in turn decreased ANP
levels, potentially contributing to hypertension
and other deleterious effects in cardiometabolic
disease. Although a definitive pathophysiological
link between miR-425, obesity, diabetes, and
ANP levels is not yet established, this study does
add to the compelling evidence that miRNAs
are part of important regulatory mechanisms in
cardiometabolic diseases that merit further inves-
tigation (18).
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