An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology

Andre P. Lourenço1†, Adelino F. Leite-Moreira1‡, Jean-Luc Balligand2, Johann Bauerachs3, Dana Dawson4, Rudolf A. de Boer5, Leon J. de Windt6, Inês Falcão-Pires1, Ricardo Fontes-Carvalho1, Stefan Franz7, Mauro Giacca8, Denise Hilfiker-Kleiner9, Emilio Hirsch10, Christoph Maack11, Manuel Mayr12, Burkert Pieske13, Thomas Thum14, Carlo G. Tocchetti15, Dirk L. Brutsaert16, and Stephane Heymans17,18,19

1 Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal; 2 Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IPEC), and Clinique Universitaire Saint-Luc, Université catholique de Louvain, Brussels, Belgium; 3 Klinik fuer Kardiologie und Angiologie Medizinische Hochschule, Hannover, Germany; 4 Reader in Cardiovascular Medicine and Honorary Consultant Cardiologist, University of Aberdeen, UK; 5 University Medical Centre Groningen, Brigham and Women’s Hospital; 6 Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; 7 University Hospital Halle, Department of Internal Medicine III, Halle, Saale, Germany; 8 Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB) & Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; 9 Molecular Cardiology, Department of Cardiology and Angiology, MHH, Hannover; Germany; 10 Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy; 11 Klinik fuer Innere Medizin III, Universitatsklinikum des Saarlandes, Homburg, Germany; 12 The James Black Centre and King's British Heart Foundation Centre, King's College, University of London, London, UK; 13 Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charité & Berlin Institute of Health, Berlin, Germany & Department of Cardiology, University of Graz, Graz, Austria; 14 Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, & REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, UK; 15 Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, Naples, Italy; 16 Prof-Emer. University of Antwerp, Belgium; 17 Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands; 18 Cardiovascular Sciences, University of Leuven, Belgium; and 19 Netherlands Heart Institute, Utrecht, The Netherlands

Received 31 December 2016; revised 8 September 2017; accepted 1 October 2017

As heart failure with preserved ejection fraction (HfPfEF) rises to epidemic proportions, major steps in patient management and therapeutic development are badly needed. With the current position paper we seek to update our view on HfPfEF as a highly complex systemic syndrome, from risk factors and mechanisms to long-term clinical manifestations. We will revise recent advances in animal model development, experimental set-ups and basic and translational science approaches to HfPfEF research, highlighting their drawbacks and advantages. Directions are provided for proper model selection as well as for integrative functional evaluation from the in vitro cell function testing. Additionally, we address new research challenges that require integration of higher-order inter-organ and inter-cell communication to achieve a full systems biology perspective of HfPfEF.

Keywords

Heart failure with preserved ejection fraction • Animal models • Experimental evaluation • Molecular biology • Myocardial function
Introduction

After a long period of omission, past years have been prolific in trials addressing heart failure with preserved ejection fraction (HFrEF). Epidemiological trends suggest that with increased longevity and escalating co-morbidity burden, the prevalence of HFrEF may rise to epidemic proportions. Mortality ranges from 30 to 60% at 5 years, hospitalization rate is high and quality of life (QOL) is severely impaired. Several randomized clinical trials (RCTs) have attempted to halt disease progression and mitigate morbidity and mortality targeting various potential pathophysiological mechanisms, all with inconclusive or neutral results. A detailed overview of these RCTs is out of the scope of the current work and can be found elsewhere.\(^1\),\(^2\) Interestingly, changes in lifestyle such as exercise training and caloric restriction have shown the most promising results in short-term trials.\(^3\),\(^4\) raising the possibility that pleiotropic effects will be needed to change the course of HFrEF.\(^5\) Lack of progress in pharmacological patient management warrants not only for better designed trials with well defined enrolment criteria and end-points, but also for a clearer understanding of pathophysiology.\(^6\)–\(^8\) To date, translational and basic science were unable to support therapeutic development. Indeed, while a multitude of data from experimental models has been gathered from organ baths down to intracellular mechanisms involved in cardiac relaxation and compliance, vascular function, and inflammation, these detailed mechanical, biochemical and molecular insights derived from basic science are yet to be linked in a full extent to preclinical models and sophisticated patient phenotyping. This position paper focuses on current knowledge on the pathophysiology of HFrEF, available animal models and experimental methodologies. From these data, we propose directions for future research in the translational field.

Diagnosis of heart failure with preserved ejection fraction

Diastolic function is dictated by left ventricular (LV) relaxation and compliance which jointly enable filling at low pressure\(^9\) (Figure 1). Disturbances in any of these lead to diastolic dysfunction (DD). Asymptomatic DD [by some denoted as preclinical heart failure (HF)] is common in the community. When carefully studied, patients often develop reduced QOL and show increased cardiovascular risk.\(^10\) Importantly, follow-up studies revealed frequent progression to HFrEF.\(^11\) Simplistically, the diagnosis of HFrEF relies on signs and symptoms of lung congestion that cannot be attributed to other causes, preserved or normal ejection fraction and markers of diastolic function impairment.\(^12\) The gold standard to diagnose HFrEF would be invasive haemodynamic evaluation with exercise testing because it clearly documents cardiac failure development (by rising filling pressures and inability to increase cardiac output) during effort\(^13\),\(^14\) but clearly non-invasive surrogates are warranted because invasive testing carries risk and is not feasible in every patient. The diagnosis of HFrEF remains disputed. The 2016 ESC guidelines require at least symptoms, objective signs of HF, and some degree of structural or functional deficit. The latter is usually measured by echocardiography, and may include LV hypertrophy (LVM), increased left atrial volume, and various abnormalities associated with DD.\(^15\) Although DD has always been considered a key element, only two-thirds of patients show DD at rest in some RCTs.\(^16\),\(^17\) This simple observation underscores that there is no solid consensus on the diagnosis of HFrEF. Indeed, although DD is a dominant feature of HFrEF, most experts now view it as a complex syndrome in which multiple cardiac, vascular and non-cardiac determinants come into play to impair cardiovascular reserve\(^18\)–\(^19\) (Figure 2). While in HFrEF with reduced ejection fraction (HFrEF) a sudden insult leads to myocardial loss, functional impairment and self-amplifying neurohumoral cascades, HFrEF is a slowly progressive process without an index event. Ageing and co-morbidities progressively drive dysfunction by way of altered load conditions, inflammation and complex systemic changes. The direct effects of ageing explain the predominance of HFrEF in the elderly, who have long-term co-morbidities and impaired cardiovascular reserve. For practical reasons in basic research a single organ—single stressor approach is usually favoured. Indeed, ageing and multiple co-morbidities are difficult to mimic in the laboratory. Nevertheless, several new insights from experimental studies on ageing and co-morbidities have now emerged and could propel our knowledge of HFrEF. We will discuss them.

It should be highlighted that ejection fraction (EF) is load-dependent\(^9\) and overestimated in hypertrophy due to increased myocardial thickening.\(^20\) Load-independent indexes show impaired baseline contractility and poor response to exercise.\(^21\),\(^22\) Regardless of its limitations, current guidelines\(^15\) base their diagnostic criteria on EF. Follow-up reveals that patients classified under HFrEF or HFrEF would later fall in the opposite category,\(^23\) echocardiography poorly tracks individual evolution,\(^24\) and reliance on resting parameters is inadequate because HFrEF begins with effort intolerance. Guidelines poorly incorporate this concept, relying mostly on data acquired from inpatients with decompensated HF and unusually high natriuretic peptide levels. Not surprisingly, sensitivity is poor when applied to RCTs enrolling stable patients\(^24\) or outpatients with dyspnoea.\(^25\) Effort testing may improve sensitivity of current ESC HFrEF diagnostic guidelines at the expense of reduced specificity.\(^14\)

Mechanisms and phenotypes of heart failure with preserved ejection fraction

Cellular mechanisms

Endomyocardial biopsies reveal more extensive cardiomyocyte hypertrophy and myofibrillar density in HFrEF compared with HFrEF but no difference in collagen volume fraction.\(^26\) Indeed, in in vitro set-up, HFrEF patients’ cardiomyocytes are stiffer and more Ca\(^{2+}\) sensitive.\(^26\) The sarcomeric protein titin is a key determinant of cardiomyocyte stiffness, both by isoform shift favouring
Figure 1 Cardiac mechanisms underlying diastolic dysfunction. Pressure and volume throughout the cardiac cycle are depicted as a function of time (A) and as pressure–volume (PV) loops (B). The main mechanisms governing left ventricular (LV) relaxation and filling as well as atrial contribution to LV filling are highlighted. Healthy (grey lines) and diastolic dysfunction tracings (black lines) are represented as dotted lines during active contraction and continuous lines from the beginning of active relaxation. The timings of valve opening and closure are denoted by circles. In (A) the corresponding aortic pressure tracings are also presented (light grey and grey dashed lines, respectively) whereas in (B) the end-systolic and end-diastolic PV relationships are shown. Notice that in (A) high afterload and reflected waves lead to delayed start and course of relaxation which along with lower compliance dictates slower filling at the expense of higher filling pressures and a proportionally larger dependence on atrial contraction. In (B) notice the upward shift in end-diastolic PV relationship (EDPVR) as well as impaired ventricular–vascular coupling due to the marked increase in effective arterial elastance (Ea). CB, cross-bridge; CM, cardiomyocyte; ECM, extracellular matrix; HR, heart rate; RV, right ventricle.

Ageing
Ageing lengthens relaxation and increases LV stiffness by collagen accumulation and cross-linking, cardiomyocyte loss, and reactive hypertrophy. Neuroendocrine disturbances, mitochondrial dysfunction, increased oxidative stress, and fibroblast activation are well established ageing-associated pathways. Repeated heart beats rupture the elastin laminae of central vessels leading to dilatation and stiffening, loss of Windkessel effect and distal transmission of pulsatile pressure. Increased wave velocity leads to earlier wave reflection. Although initial studies on hypertensive patients have shown that wall stress actually decreases in late systole, at the time of wave reflection, population-based studies strongly suggest that wave reflection and augmented wall stress in late systole contribute to impaired relaxation. Moreover, in patients referred for coronary angiography, wave reflection predicts worse cardiovascular outcomes, particularly when systolic function is preserved. Indeed, augmented wall stress raises LV work, conversely decreasing diastolic perfusion pressure. Increased wall stress in turn raises end-systolic elastance and volume sensitivity while transmitted pulse pressure evokes endothelial dysfunction (ED). Increased arterial stiffening with exercise has been recently shown in HFpEF. Measures of LVH, left atrial size, DD but also natriuretic peptides are age-dependent, which suggests that ageing represents to some extent physiological HFpEF. Clearly, ageing is an autonomous progressive process, so the boundaries between ageing and HFpEF remain uncertain. One of the main challenges, therefore, will be to provide a more uniform description of the ageing cardiac phenotype, in order to set it apart from HFpEF.
Figure 2 Time course of heart failure with preserved ejection fraction (HFpEF) evolution. The scheme highlights the long-term course and hypothetical progression from established risk factors and mechanisms to impaired cardiovascular (CV) function, decreased CV reserve and ultimately mortality. Timing of events and their order is of course variable between patients and still debatable, it is merely hypothetical. AF, atrial fibrillation; ANS, autonomic nervous system; CAD, coronary artery disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; HF, heart failure; HR, heart rate; LA, left atrial; PH, pulmonary hypertension; PP, pulse pressure; QOL, quality of life; RV, right ventricular; SM, skeletal muscle; VVC, ventricular–vascular coupling.

Gender

Although it is now realized that not only elderly females but also younger obese and diabetes mellitus (DM) men constitute HFpEF risk groups, women tend to predominate in HFpEF cohorts. This finding may be explained because women more often reach an advanced age, but also by pathophysiological mechanisms. Gender differences in vascular biology and sex hormones may explain pre-menopausal preservation of elasticity and postmenopausal aortic stiffening. Aortic elasticity is lost after menopause, constituting a potential explanation for hypertrophic remodelling and HFpEF. Loss of ovarian function also leads to ED and inflammation, which entail co-morbidities and HFpEF.

Co-morbidities

It is well recognized that a higher burden of co-morbidities exists in HFpEF. The most prominent amongst co-morbidities are systemic arterial hypertension, obesity and DM, but a long list of other co-morbidities such as chronic obstructive pulmonary disease, renal dysfunction, sleep disordered breathing, hypothyroidism and anaemia have also been well documented. Non-cardiac adverse events, other than typical HF end-point such as pump failure and sudden death are common but it remains unclear whether they outweigh HF-related outcomes. Competitive risk for non-cardiac death and events unrelated to the disease process itself poses a major hurdle to survival analysis in RCTs, which may warrant a focus on secondary outcomes such as functional capacity. Conversely, co-morbidities themselves are an integral part of the HFpEF syndrome, and actively contribute to dysfunction and remodelling in HFpEF (Figure 2). Obesity and metabolic syndrome associate with DD well before DM, while DM may ultimately lead to cardiomyopathy. To revise how each co-morbidity contributes to disease in the context of HFpEF is outside the scope of the current work and detailed overviews can be found elsewhere. We must underscore, however, that HFpEF is not just the outcome of co-morbidities. Abnormalities in cardiovascular structure and function go beyond those explainable by co-morbidities alone. Co-morbidities, however, do influence phenotype and outcomes and should be aggressively managed.

Microvascular and epicardial coronary artery disease

Recent progress in HFpEF research has suggested that HFpEF may in fact be a disease of the microvasculature. Studying the role of co-morbidities and inflammation created a new hypothesis based on coronary microvascular ED, which was supported by findings at autopsy. HFpEF patients show systemic microvascular dysfunction as well as coronary microvascular ED and rarefaction. Interestingly, epicardial coronary artery disease (CAD) prevalence...
was also higher at autopsy. CAD is documented in many of HFP EF patients, pooled analysis of prospective HFP EF studies suggests that it is present in approximately 50% of patients and contributes to a worse prognosis. In a HFP EF cohort that underwent coronary angiography, patients with CAD (68% of the cohort) showed increased mortality and EF deterioration that was mitigated by revascularization.

Pulmonary hypertension and right ventricular dysfunction

Large community studies demonstrate that pulmonary hypertension is prevalent, often severe and independently predicts mortality in HFP EF. It may discriminate between HFP EF and hypertension suggesting a role in symptom development. Moreover, symptoms develop regardless of capillary wedge pressure, which further insinuates a pre-capillary component. More recently, right ventricular dysfunction was documented in one-third of HFP EF patients undergoing right heart catheterization and shown to be an independent predictor of mortality.

Peripheral factors

Effort intolerance, which is the core HF sign and symptom in HFP EF, is not solely due to low cardiovascular reserve but also to poor peripheral oxygen extraction by the skeletal muscle. Indeed, chronotropic incompetence and low systolic reserve lead to further reliance on peripheral oxygen extraction to meet demands in HFP EF but peripheral extraction also fails due to abnormalities of both skeletal muscle and the microvasculature (see supplementary material online, Figure S7). Of note, the improvements in exercise capacity due to exercise training appear to derive primarily from improved peripheral (arterial and/or skeletal muscle) function, highlighting the important contribution and plasticity of peripheral factors.

Can we improve characterization of heart failure with preserved ejection fraction phenotypes?

Large cohorts and RCTs have established wide heterogeneity in aetiology, remodelling patterns, stages of presentation, and co-morbid conditions. It has been proposed that patient heterogeneity is in fact a central reason why so many studies had neutral outcomes. A central challenge will thus be to identify relevant subgroups in which specific therapeutic strategies may be tested. A task that will require integration of clinical, structural and functional data.

Experimental models

Given its complex pathophysiology, none of the current models fully emulates HFP EF and probably none ever will. Preclinical tests should build upon robust features of each model. A detailed overview of available animal models is provided in the supplementary material online, Table S1.

Small animals

Only salt-sensitive rats and obese hypertensive and diabetic ZSF1 rats have a clear demonstration of increased lung weight, which could relate to HF. Salt-sensitive rats however have been criticized because they develop LV dilatation and decreased EF. As for ZSF1 obese rats, they have low peak maximum oxygen consumption and effort intolerance, which puts the model one step ahead towards clinical translation. Additionally, microvascular injury, ischaemia, inflammation and titin hypophosphorylation have been demonstrated. ZSF1 obese rats have a convenient hypertensive lean control and mimic many features of HFP EF. Valuable insights into alternatives to effort testing have been proposed. Nevertheless, we must highlight several drawbacks. They are young adults with untreated metabolic syndrome and do not recapitulate the scenario of an elderly patient, they progress to renal failure at an older age, the full-blown phenotype is hard to recapitulate in reproductive age females, and they show only mild extracellular matrix changes. Animal models of pulmonary hypertension associated with HFP EF are also needed, a two-hit model was recently proposed. As for mice, few models have been able to mimic HFP EF. Mysin-binding protein C phosphorylation-deficient mice develop LVH and stiffness, delayed relaxation, lung congestion, and poor spontaneous activity, but unfortunately also slightly depressed EF whereas obese and diabetic Lepr(db/db) mice develop LV stiffening due mainly to titin hypophosphorylation. The main issues with Lepr(db/db) are marked changes in metabolism and later decline in EF. Mice models may provide an invaluable contribution to pathophysiological studies by selective genetic manipulation of disease modifiers. Titin immunoglobulin domain-coding exon-deficient mice develop cardiomyocyte stiffening with effort intolerance.

Large animals

Large animal models are highly desirable because they better mimic human physiology. HFP EF has been modelled in old hypertensive dogs by renal wrapping. They show hypertrophy, fibrosis and impaired relaxation. Recently, a new model was developed in young female landrace pigs. Pigs were rendered hypertensive by deoxycorticosterone coupled with a high-salt diet while hyperlipidaemia was induced by a high-cholesterol diet. They did not show increased fibrosis, but did show concentric hypertrophic remodelling and stiffening. Although animals were not symptomatic, disturbances were further aggravated at high pacing rates. Authors attributed their findings to impaired PKG signalling, titin isoform shift and hypophosphorylation. This model has drawbacks such as marked hypercholesterolaemia, a young age and mild hypertension. HFP EF was also mimicked in dogs by repeated coronary microembolization, the only model that partly addresses the link with CAD. Lastly, large animal models are essential for device development and intervention therapies, as recently reported with proof-of-concept percutaneous pericardiotomy in pigs.

Skinned cardiac myocytes

Some of the most influential pathophysiology findings from HFP EF patients have been obtained in skinned cardiomyocyte
preparations. These studies indicate that LV stiffness is mostly ascribed to passive stiffness of the cardiomyocytes themselves. Mechanistically, a shift in titin isoforms and hypophosphorylation was directly implicated in higher passive force. Findings were reproduced in an animal model of HFP EF. Access to HFP EF patients’ biopsies is scarce because there is no formal indication for endomyocardial biopsy other than clinical suspicion of restrictive, infiltrative or inflammatory cardiomyopathy. This leads to selection bias, because biopsies are usually collected in younger patients without CAD. Another concern is the source of HFP EF cardiomyocytes usually obtained from the endocardium and their controls usually obtained from transplanted patients’ right ventricle or donor hearts. Finally, studies have been performed with expanded lattice spacing at low temperature. Works in intact cardiomyocytes at physiological temperatures show that skinned cardiomyocyte preparations miss the actomyosin contribution. Pros and cons of various experimental set-ups from cell function to in vivo cardiovascular function assessment are summarized in Table 1.

Given its growing health impact and current lack of evidence-based therapy, it may be justifiable to extend biopsy collection to a broader population of HFP EF patients in experienced centres where reported complication rates are minimal, not only at catheterization laboratories but also in surgical theatres. Whenever possible, findings from cardiomyocyte preparations should be translated to larger set-ups as assessing cardiomyocyte sarcomere shortening, which rarely spans more than 15%, is a poor surrogate of cardiac function, which relies on a complex architecture to achieve EF of over 50%.

Intact cardiac myocytes

An important aspect of diastolic function is disturbed intracellular Ca\(^{2+}\) and Na\(^+\) handling. While in HFr EF, decreased amplitudes of cytosolic Ca\(^{2+}\) transients play the dominant role for contractile dysfunction, it is less clear to which extent alterations of cytosolic Ca\(^{2+}\) (and Na\(^+\)) handling actually contribute to DD in HFP EF. Cellular ion handling is commonly analysed in isolated, intact cardiac myocytes paced by electrical field stimulation, in particular from animal models. The advantage of these studies over the skinned cardiomyocyte preparations is that, together with cell shortening, cytosolic ion handling and its alterations can be analysed by fluororescent probes, while the skinned myocyte technique only analyses sarcomeric function.

It is currently largely unclear how far mitochondrial dysfunction and/or oxidative stress contribute to diastolic (and/or mild systolic) dysfunction also in HFP EF. Studies on isolated cardiac myocytes allow the investigation of the pyridine nucleotide redox state, membrane potential and reactive oxygen species in mitochondria integrated in their physiological cellular context using fluorescence imaging combined with field stimulation.

A drawback of both techniques is that myocytes usually lie slack on a cover slip without any physical workload. This underestimates physiological workload and may have important implications for mitochondrial energetics and excitation–contraction coupling. A major recent advance was the development of techniques that allow stretching and imposition of various degrees of preload and afterload on isolated cardiac myocytes upon attachment to thin glass rods.

Langendorff and working intact isolated heart preparations

The Langendorff model can be used to assess end-diastolic pressure–volume relationship and LV stiffness much in the way pressure–volume catheters do in vivo, but devoid of systemic effects. Technical challenges have been reviewed. This model complements findings on cell/tissue preparations and constitutes a bridge to whole-heart physiology.

Assessment of heart failure with preserved ejection fraction in experimental models

Haemodynamic evaluation

This approach is invasive, requiring deeper anaesthesia which is usually confined to terminal evaluation. Nonetheless, serial evaluations and telemetry are feasible. Time-honoured approaches have relied on a separate assessment of active relaxation and passive end-diastolic stiffness, but newer methods, based on global optimization fitting, may be of added value. Methodological aspects of open-chest and closed-chest approaches have been extensively reviewed. Stiffness is usually derived from end-diastolic pressure–volume relationships. In closed-chest preparations the first beats after preload reduction are usually influenced by right ventricular unloading which accounts for almost 30–40% of resting end-diastolic pressure, and this should be accounted for. The LV stiffness constant has units of volume\(^{-1}\) and therefore depends on LV geometry and size. Several approaches have been used to circumvent this problem. One approach is to derive stress–strain analogues, including estimates of LV mass or wall thickness, another is to index volumes. Assessment of a single point of end-diastolic pressure and end-diastolic volume is highly load-dependent and inaccurate. Despite its helpful use in large community studies, single beat methods raise concerns in the experimental scenario. Even after pressure correction for the active component of relaxation they are prone to error in individual estimation, particularly in closed-chest preparations. Methods based on volume-normalized data acquired in various species are also better when applied to groups rather than individuals, have bias in the high and low pressure range, and limitations in HFP EF. Lastly, contractile reserve is impaired in HFP EF and should also be appraised in experimental models, sudden afterload unmasking low contractile reserve.

Imaging methods

Non-invasive imaging methods are favoured both in clinical practice and experimental research. Echocardiography is the first choice. Most of the standard clinical approaches can be translated to animal research using high-frequency linear-array probes even with common echocardiography machines. The E/E’ ratio has been...
extensively investigated as a predictor of LV filling pressures, with conflicting results. It should be emphasized that relying on only a single parameter is usually less informative than an integrative analysis.\(^7\) Strain analysis is mainly a research tool, but it has the potential to overcome tissue Doppler imaging. It can gauge all myocardial segments and account for chamber geometry. It remains to be established whether strain-derived echocardiographic parameters may be of added value to HFrEF diagnosis. Speckle tracking has advantages over tissue Doppler imaging, it is unaffected by the angle of alignment but is also constrained by lower time-resolution. In rodents, resolution must be high enough to track speckles and demands high-frequency probes and specialized machines.

Another interesting field of research is the left atrium. Left atrial volume is a sensitive marker of severity and duration of HFrEF and the left atrium actively modulates LV diastolic function\(^8\) but even early disturbances in atrial function may constitute markers of HFrEF.\(^9\) Application of magnetic resonance imaging (MRI) in HFrEF remains limited. Although MRI with through-plane-phase-contrast and myocardial tagging/feature tracking matches most of echocardiography’s capabilities,\(^9\) MRI has lower time-resolution and availability, inability to perform real-time measurements, lack of dedicated software for diastolic function, higher costs, and relative contraindications but it excels when the acoustic window is poor, enabling better space-resolution and universal estimation of pulmonary venous flow. MRI has extended possibilities such as the ability to assess interstitial myocardial fibrosis. The most divulged approach is late gadolinium enhancement with T\(_1\)-mapping, a technology that has been translated to rodents\(^9\) enabling precise whole-heart quantification with repeat evaluation; the extracellular compartment is likely to play an important pathophysiological role and could be an important surrogate end-point. Another possibility is the assessment of cardiac bioenergetics by way of \(^{31}\)P magnetic resonance spectroscopy.\(^9\)

How to assess heart failure in animal models?

Several animal models have been proposed as HFrEF models without objective evidence of HF. These should be viewed as models of DD but whether it translates into HF is yet to be defined. Lung congestion, as assessed by lung weight, was proposed as a marker of HFrEF.\(^58\) Because lung weights are prone to confounding influences we propose that effort testing should be undertaken and that no model should be presented as HFrEF without clear documentation of effort intolerance.

Exercise testing (diastolic stress tests) and alternatives

Several limitations to cardiovascular reserve have been shown in HFrEF during dynamic exercise but their relative role is disputed.

Table 1 Experimental approaches to assess heart failure with preserved ejection fraction

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemodynamics</td>
<td>Gold standard to assess LV compliance and relaxation in vivo; pharmacological manipulation (heart and vessels)</td>
</tr>
<tr>
<td>Muscle strip and cardiomyocyte preparations</td>
<td>Assessment of role of excitation–contraction coupling, in particular; cellular ion handling, myofilament function, titin, residual Ca(^{2+}) and cross-bridges; bioenergetics, and ECM; extensive pharmacological manipulation (myocardium)</td>
</tr>
<tr>
<td>Langendorff and working heart</td>
<td>Ex vivo bridge between haemodynamics and muscle strips/cardiomyocytes; working heart allows for better preload control; assess role of coronary perfusion; intrinsic myocardial properties (without anaesthetics, systemic influences, ventricular interdependence and pericardial restraint); pharmacological studies (myocardium and coronaries)</td>
</tr>
<tr>
<td>Echocardiography and MRI</td>
<td>Assess flows, dimensions and strain; serial non-invasive evaluation under light sedation; MRI and MRS enable whole-heart evaluation of fibrosis and bioenergetics, respectively; possibility for 3D reconstruction and molecular imaging</td>
</tr>
<tr>
<td>Effort testing</td>
<td>Assess cardiovascular reserve and effort intolerance; treadmill testing with gas analysis (VO(2)({\text{max}}) and anaerobic threshold); load, pharmacological or HR manipulations (reasonable substitutes, should be employed in any functional evaluation set-up)</td>
</tr>
</tbody>
</table>

ECM, extracellular matrix; HFrEF, heart failure with preserved ejection fraction; HR, heart rate; LV, left ventricular; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; VO\(_2\)\(_{\text{max}}\), maximum oxygen consumption.
Robust in vivo documentation of a heart failure surrogate is warranted to establish any experimental model of HFrEF, we recommend effort testing cardiovascular phenotype should be extensively characterized in animal models of HFrEF and preclinical drug testing, we recommend using multiple experimental set-ups from in vivo to in vitro.

Research on the pathophysiological roles and impact in ventricular/vascular structure and function of co-morbidities, ageing and gender should be a priority in available HFrEF models.

New developments in imaging methods should continue to be applied to HFrEF experimental models in order to derive non-invasive assessment methodologies.

Discovery-driven genomics, transcriptomics and proteomics in HFrEF patient and HFrEF animal model samples and bioinformatics integration with clinical/functional phenotype are warranted.

Research on disturbed intercellular communication in HFrEF is a priority, assessment of engineered tissue from patient-derived induced pluripotent stem cells may be a feasible approach.

The role played by coronary and systemic microvascular dysfunction and the underlying mechanisms should be explored in HFrEF models.

Systemic involvement should be further explored in models of HFrEF, focusing particularly on the adipose tissue, skeletal muscle, nervous system, kidneys and lungs.

Collaborations with clinical researchers are the key for clinically oriented research and easy translation of experimental findings.

It must be emphasized that most HFrEF patients are elderly and have various co-morbidities that may preclude dynamic exercise or confound interpretation. Still, a cardiopulmonary exercise test is an invaluable diagnostic tool, measures of submaximal and peak effort were shown to be reliable in HFrEF patients and have been used as strong end-points in RCTs. Stress and effort testing is increasingly advocated also in echocardiography, but it remains unclear which variables should be sought and under which protocol. A reasonable alternative when dynamic exercise is not feasible might be load or pharmacological manipulation. Although it may be technically challenging to have joint hemodynamic evaluation and effort testing with maximum oxygen consumption, such an integrated evaluation of all determinants of effort intolerance could be an important contribution from experimental models of HFrEF.

Joint afterload and preload elevation with selective vasopressors is potentially helpful as appraised experimentally. Pacing-induced tachycardia is another alternative, whereas the role of dobutamine is debated, as some studies suggest it may impair E response in HFrEF, while others show smaller increases in systolic wall tension than dynamic exercise, even decreasing end-diastolic volume and myocardial oxygen consumption in the hypertrophic heart, without worsening DD.

It remains poorly investigated. The lungs are the first organ that are worsening DD.

Gaps in evidence, what do we need for a systems biology approach?

Due to the lack of availability of samples from HFrEF patients and the lag in experimental modelling, our view on cellular and molecular determinants of HFrEF is poorly formed. Ageing and co-morbidities drive microvascular inflammation and myocardial stiffness, but this may be only one of the contributing processes. Indeed, HFrEF carries an entirely distinct microRNA signature when compared with HFrEF. Studies addressing proteomics of HFrEF and bioinformatics integration with clinical phenotype are lacking. Moreover, it is likely that these pathways will diverge according to underlying co-morbidities. The role of genetic variants is poorly understood and will require large discovery-driven population-based studies such as those undertaken for LHV. Mimicking these gene variants in animal models may provide important clues. The role of oxidative stress, mitochondrial dysfunction and altered bioenergetics in ageing and co-morbidity-induced myocardial remodelling is well established. Benefits of experimental therapies directed at these targets have been reported in hypertension and ageing models, but clear documentation in clinical or experimental HFrEF is needed. The role of afterload, loading sequence and reflected waves should be addressed specifically on HFrEF models. Indeed, a thorough characterization of vascular and microvascular function in experimental HFrEF is warranted and will pave the way for preclinical testing. Unveiling the complete pathophysiological scenario, however, will require an in-depth understanding of the cellular disturbances and complex interplay between endothelium, cardiomyocytes, and fibroblasts as well as the high-order interactions with other tissues (see supplementary material online, Figure S1). Dysfunctional interactions between cardiac cell-types have been proposed, but while various intercellular communication disturbances have been well documented in related experimental models and cell culture experiments, few were documented in HFrEF. Further developments in co-culture methods and conditioned medium exposure applied to HFrEF samples may provide important clues, as well as research on engineered tissues and human induced pluripotent cell-derived cardiomyocytes. The high-order cross-talk between the heart and lung, skeletal muscle, adipose tissue (AT), and kidney in HF is increasingly acknowledged, but its particular features in HFrEF remain poorly investigated. The lungs are the first organ that are directly affected in HFrEF, pre-capillary and post-capillary components, as well as pulmonary vascular ED have been well established. The potential neuroendocrine contribution of endothelial lung

Table 2 Practical recommendations for translational research on heart failure with preserved ejection fraction

| Robust in vivo documentation of a heart failure surrogate is warranted to establish any experimental model of HFrEF, we recommend effort testing cardiovascular phenotype should be extensively characterized in animal models of HFrEF and preclinical drug testing, we recommend using multiple experimental set-ups from in vivo to in vitro. |
| Research on the pathophysiological roles and impact in ventricular/vascular structure and function of co-morbidities, ageing and gender should be a priority in available HFrEF models. |
| New developments in imaging methods should continue to be applied to HFrEF experimental models in order to derive non-invasive assessment methodologies. |
| Discovery-driven genomics, transcriptomics and proteomics in HFrEF patient and HFrEF animal model samples and bioinformatics integration with clinical/functional phenotype are warranted. |
| Research on disturbed intercellular communication in HFrEF is a priority, assessment of engineered tissue from patient-derived induced pluripotent stem cells may be a feasible approach. |
| The role played by coronary and systemic microvascular dysfunction and the underlying mechanisms should be explored in HFrEF models. |
| Systemic involvement should be further explored in models of HFrEF, focusing particularly on the adipose tissue, skeletal muscle, nervous system, kidneys and lungs. |
| Collaborations with clinical researchers are the key for clinically oriented research and easy translation of experimental findings. |

HFrEF, heart failure with preserved ejection fraction.
cells and macrophages to LV disease progression in HFrEF101 will likely also be involved in HfPEF. Growing evidence that supports a role for lean body mass loss3 and histopathological and functional disturbances in skeletal muscle biopsies has been documented.102 Chronic kidney disease is highly prevalent and constitutes a major determinant of outcome in HFrEF: the common link may be ED and inflammation. The interactive role of renal and cardiac disturbances has been recognized in HfPEF models.103 Finally, the AT may be an important contributor to HfPEF.104,105 The ageing AT is infiltrated by macrophages and becomes highly active as a source of adipokines/cytokines which may be enhanced by co-morbidities.106 Adipokines may modulate HfPEF progression. Epicardial AT has been associated with DD in metabolic syndrome. Shared blood supply and neighbourhood epicardial AT may exert important vasocrine and paracrine effects. An important note is its virtual absence in small animals. Finally, a systems biology view of HfPEF will require additional understanding of the roles of ageing and gender in each HfPEF model or experimental set-up.

Conclusions

As the mechanisms and features of HfPEF are progressively unveiled in clinical and epidemiological studies, basic and translational researchers must be aware of its complexity and may profit from guidance both in terms of experimental model and experimental set-up selection as in terms of the most relevant investigation topics. Further access to myocardial samples of representative HfPEF patient cohorts that enable functional and molecular phenotyping is warranted. Animal models should be selected based upon their specific features, favouring those that have effort intolerance or impaired cardiovascular reserve as a clinical counterpart, at least for preclinical therapy testing. The roles of ageing, gender, and specific co-morbidities in HfPEF progression have been poorly explored and should be addressed in these experimental models. Functional evaluation should rely on multiple experimental set-ups, ideally ranging from in vivo organ function to ex vivo or in vitro cell function tests. To attain a systems biology outlook of HfPEF, systemic influences and higher-order cross-talk with other organs should be further investigated, as well as disturbed intercellular communication mechanisms within the heart. Practical recommendations for translational researchers on HfPEF are provided in Table 2.

Supplementary Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Systemic changes and intercellular cardiac communication disturbances underlying heart failure with preserved ejection fraction (HfPEF).

Table S1. HfPEF and HfPEF-related experimental models.

Funding

We acknowledge the support from the Netherlands Cardiovascular Research Initiative: ‘An initiative with support of the Dutch Heart Foundation’, CVON-ARENA. APL, ALM, IFP and RFC, grants from Fundação para a Ciência e Tecnologia (PTDC/DTP-PICT/4104/2014 and EXCL/BIM –MEC/0055/2012, financed by funds nacionais através da FCT - Fundação para a Ciência e Tecnologia, I.P. e cofinanciados pelo FEDER – Fundo Europeu de Desenvolvimento Regional, PTDC/DTP-PICT/4104/2014, através do COMPETE 2020 - Programa Operacional Fatores de Competitividade, FP7-Health-2010, MEDIA-261409, MINOTAUR, ERA-NET-CVD 2017, ‘Diabetes obesity at the crossroads between Oncological and Cardiovascular diseases - a system analysis NET towards precision medicine (DONET)’ (NORTE-01-0145-FEDER-000003) and ‘New Targets in Diastolic heart failure: from co-MOrbidities to persoNalizeD medicine (NETDIAMOND)’ (SAICT-PAC/0047/2013; 01/12/2016 to 30/11/2019), grants from EU through the European Regional Development Fund (ERDF), European Structural and Investment Funds (ESIF), under Lisbon Portugal Regional Operational Programme and National Funds through FCT.

Conflict of interest: S.H. received funding from the FWO, G080014N, from the European Union Commission’s Seventh Framework programme under grant agreement no. 305507 (HOMAGE), no. 602904 (FIBROTARGETS) and FP7-Health-2013-Innovations-1 no. 602156 (HECATOS). J.L.B. received grants from EU Horizon 2020, the Fonds National de la Recherche Scientifique (FNRS) and Action de Recherche Concertée from Federation Wallonie-Bruxelles. D.D. received funding from the British Heart Foundation, British Medical Association, Chief Scientist Office in Scotland, Tenovus Scotland, and Medical Research Council UK. The other authors report no conflicts of interest.

References

18. Myocardial structure and function in middle-aged adults: the Asklepios study. JA mG e r i a t r S o c 2011;57:783–787.

Circulation 2006; 20

