Comparison of MOLLI, shMOLLI, and SASHA in discrimination between health and disease and relationship with histologically derived collagen volume fraction

Nicholas Child1,2, Gonca Suna2,3, Darius Dabir1,4, May-Lin Yap1, Toby Rogers1,3, Misha Kathirgamanathan1, Eduardo Arroyo-Ucar1,5, Rocio Hinojar1, Islam Mahmoud1, Christopher Young6, Olaf Wendler7, Manuel Mayr2, Banher Sandhu1, Geraint Morton8, Marion Muhly-Reinholz9, Stefanie Dimmeler9, Eike Nagel1,10, and Valentina O. Puntmann1,10,11*

1Department of Cardiology, Guys and St Thomas’ NHS Trust, Westminster Bridge Road, London, UK; 2Cardiovascular Division, King’s College London, The Rayne Institute, St Thomas’ Hospital, Westminster Bridge Road, London SE5 9RS, UK; 3Department of Cardiology, King’s College Hospital NHS Trust, Denmark Hill, London, UK; 4Department of Radiology, University of Bonn, Regina-Pacis-Weg 3, Bonn, Germany; 5Department of Cardiology, University of Hospital, Paseo de la Castellana, La Paz, Madrid, Spain; 6Department of Cardiothoracic Surgery, Queen Alexandra Hospital, Guys and St Thomas’ NHS Trust, Westminster Bridge Road, London, UK; 7Department of Cardiothoracic Surgery, King’s College Hospital, Denmark Hill, London, UK; 8Department of Cardiology, Portsmouth Hospitals NHS Trust, Southwick Hill Road, Portsmouth, UK; 9Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, German Centre of Cardiovascular Research, (DZHK), Theodor-Stern-Kai 7, Frankfurt, Germany; and 10Department of Cardiology, Goethe University Hospital Frankfurt, German Centre of Cardiovascular Research, (DZHK), Theodor-Stern-Kai 7, Frankfurt, Germany

Received 25 June 2017; editorial decision 30 October 2017; accepted 31 October 2017

Aims
To determine the bioequivalence of several T1 mapping sequences in myocardial characterization of diffuse myocardial fibrosis.

Methods and results
We performed an intra-individual sequence comparison of three types of T1 mapping sequences [M0dified Look-Locker Inversion recovery (MOLLI), Shortened M0dified Look-Locker Inversion recovery ((sh)MOLLI), and SAuration recovery single-SHot Acquisition (SASHA)]. We employed two model diseases of diffuse interstitial fibrosis [patients with non-ischaemic dilated cardiomyopathy (NIDCM), n = 32] and aortic stenosis ([AS], n = 25)]. Twenty-six healthy individuals served as controls. Relationship with collagen volume fraction (CVF) was assessed using endomyocardial biopsies (EMB) intraoperatively in 12 AS patients. T2 mapping (GraSE) was also performed.

Myocardial native T1 with MOLLI and shMOLLI showed, firstly, an excellent discriminatory accuracy between health and disease [area under the curves (P-value): 0.94 (0.88–0.99); 0.87 (0.79–0.94); 0.61 (0.49–0.72)], secondly, relationship between histological CVF [native T1 MOLLI vs. shMOLLI vs. SASHA: r = 0.582 (P = 0.027), r = 0.524 (P = 0.046), r = 0.443 (P = 0.150)], and thirdly, with native T2 [r = 0.628 (P < 0.001), r = 0.459 (P = 0.003), r = 0.211 (P = 0.083)]. The respective relationships for extracellular volume fraction with CVF [r = 0.489 (P = 0.044), r = 0.417 (0.071), r = 0.353 (P = 0.287)] were significant for MOLLI, but not other sequences. In AS patients, native T2 was significantly higher compared to controls, and associated with levels of C-reactive protein and troponin.

Conclusion
T1 mapping sequences differ in their bioequivalence for discrimination between health and disease as well as associations with diffuse myocardial fibrosis.

Keywords
T1 mapping • MOLLI • shMOLLI • SASHA • collagen

* Corresponding author. Tel: +49-69-6301-86760; Fax: +49-69-6301-7983. E-mail: vppapers@icloud.com

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Introduction

Myocardial T1 mapping provides a novel concept in quantitative tissue characterization, yielding a value, unlike relying on visually recognizable contrast differences. Thus, T1 mapping measurements can be used to relay biologically important properties in a quantitative manner, including the presence and severity of abnormal myocardium in many cardiac conditions. T1 indices have a potential to improve clinical diagnosis and risk stratification, particularly in conditions with diffuse myocardial involvement. Despite the surge in evidence, the immediate clinical translation of these techniques is complicated by multiple variants of similar T1 mapping sequences. Each sequence and its modification yield different normal values and ranges, and show variable diagnostic performance in detection of abnormalities in human myocardium. Thus, each sequence will represent an individual diagnostic test, necessitating an individual clinical validation and standardization.

T1 mapping sequences employed in myocardial characterization differ principally in magnetization preparation by either an inversion recovery (IR) or a saturation recovery (SR) prepulse (reviewed in Higgins et al.1) The many variants of these two approaches are further distinguished by different schemes of image acquisition (e.g. number of prepulses/images/pauses) and readout parameters [flip angle (FA), time delay, adiabatic prepulse, etc]. The sequence most commonly reported is based on the IR sequence MOdified Look-Locker (MOLLI). Following its original publication,4 numerous MOLLI variants have been developed either to achieve shorter breath-holds5,6 or greater T1 accuracy.7 SR sequences benefit from a much shorter period of T1 relaxation following a SR preparation8,9 and absence of history of magnetization of prior heartbeats, thus, shortening the overall acquisition time and improving the T1 accuracy, respectively. All T1 mapping methods are continuously and actively modified (‘optimized’) in terms of protocol parameters, scanner software versions, practical scanning methodology and methods of analysis, as well as manufacturer-specific implementations. In this study, we undertook sequence comparison of the 3 most commonly reported T1 mapping sequences—within the same individual—to examine their bioequivalence, or performance in vivo, in terms of diagnostic accuracy, relationships with histologically derived collagen volume fraction (CVF), and their T2 sensitivity by comparison with T2 mapping, in two model diseases of diffuse myocardial fibrosis; non-ischaemic dilative cardiomyopathy (NIDCM) and aortic stenosis (AS).

Methods

Consecutive patients from Guys and St. Thomas’ and Kings College Hospitals were invited to participate in this study:

(1) Patients with NIDCM (n=32). Prior to their enrolment, the diagnosis was confirmed by cardiovascular magnetic resonance (CMR) on the basis of increased LV end-diastolic volume indexed to body surface area and reduced LV ejection fraction (EF < 50%) compared with published reference ranges normalized for age and sex.11 Several of these subjects were included in our previous publications.10,12,13

(2) Patients with severe AS (n=25) were identified from cardiology and cardiothoracic surgery outpatient clinics. AS was the leading value problem based on Doppler echocardiographic demonstration of mean aortic valve pressure gradient >40 mmHg.14

(3) Asymptomatic and normotensive subjects (n=26), taking no regular medication and with no significant medical history and normal CMR findings, including volumes and mass, served as controls.12,15

Control subjects were recruited as a part of the parallel project into the normal values.16 The subgroup was selected to provide an age-gender matched control group to the AS group.

Exclusion criteria for all subjects are detailed in supplementary material.

Blood samples for haematocrit in AS patients were obtained contemporaneously at the time of the CMR procedure, whereas in patients with NIDCM these were based on the clinical blood tests.10 Analysis of serological cardiac biomarkers, including N-terminal-pro brain natriuretic peptide (NT-BNP), type 1 procollagen C-terminal propeptide (PICP), high-sensitive (hs) troponin and hs-C-reactive protein (CRP), was performed using commercial platforms. The study protocol was reviewed and approved by the local ethics committee, and written informed consent was obtained from all participants. All procedures were carried out in accordance with the Declaration of Helsinki (2013).

Image acquisition and analysis

All sequence parameters are detailed in the Supplementary material. Subjects underwent a routine clinical protocol for cardiac volumes and mass (with cine imaging) and tissue characterization with T1 mapping and late gadolinium enhancement (LGE) imaging using 3-Tesla MRI scanner equipped with advanced cardiac package and multi-transmit technology (Achieva, Philips Healthcare, Best, The Netherlands).10,12,17 T1 mapping was performed using two MOLLI variants [the original MOLLI10,12,17 and Shortened MOdified Look-Locker Inversion recovery (shMOLLI)5] and a SR variant, SATuration recovery single-SHot Acquisition (SASHA).8 Sequences were acquired in random order (to avoid bias) in a single mid-ventricular short axis (SAX) slice, prior to and 15 minutes after intravenous administration of gadobutrol (0.2 mmol/kg per body weight, Gadovist® Bayer Healthcare, Leverkusen, Germany). T2 mapping was performed in the same geometry using a hybrid gradient and spin echo GraSe sequence.

CMR analysis was performed using commercially available software (CVI42®, Circle Cardiovascular Imaging Ltd, Calgary, Canada) following standardized post-processing recommendations.10,18 LGE images were visually examined for the presence of regional scar tissue in two phase-encoding directions and confirmed as positive if the visually positive regions had a SI > 4 standard deviations (SD) from normal regions.17 Recovery rate of T1 and T2 relaxation for all sequences was measured conservatively within the septal myocardium, using PRIDE (Philips, Best, The Netherlands), as previously described and validated.13,15 Areas of LGE were excluded from the mapping regions of interests (ROI). Care was taken to avoid contamination of myocardial signal with the blood pool. In addition to T1-values of native and post-contrast myocardium the gadolinium extracellular partition coefficient, the haematoctrit-corrected extracellular volume fraction (ECV) was calculated.19

Myocardial biopsies and histological analysis

Several (n ≥ 3 per person) intraoperative deep endomyocardial biopsy (EMB) samples were obtained in 12 AS patients using either biopsy forceps (Novatome, Scholten®) or direct surgical excision, as per choice of operator. EMBs were sampled from the mid-portion of the interventricular septum, avoiding the basal fibrotic membranous part. Sample preparation and analysis approach are described in supplementary material. Mean percent fibrosis (CVF), fibrosis heterogeneity (SD between fields), patient heterogeneity (interquartile range, IQR), and inter-observer coefficient of variation (CoV) are reported.
Table 1 Discrimination between health and disease

<table>
<thead>
<tr>
<th></th>
<th>Native T1 AUC (95% CI)</th>
<th>Sig (P-value)</th>
<th>Post-contrast T1 AUC (95% CI)</th>
<th>Sig (P-value)</th>
<th>ECV AUC (95% CI)</th>
<th>Sig (P-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls vs. all patients</td>
<td>0.94 (0.88–0.99)</td>
<td><0.001</td>
<td>0.66 (0.54–0.77)</td>
<td>0.005</td>
<td>0.73 (0.64–0.83)</td>
<td><0.001</td>
</tr>
<tr>
<td>MOLLI</td>
<td>0.87 (0.79–0.94)</td>
<td><0.001</td>
<td>0.64 (0.52–0.75)</td>
<td>0.02</td>
<td>0.67 (0.58–0.79)</td>
<td><0.001</td>
</tr>
<tr>
<td>SASHA</td>
<td>0.61 (0.49–0.72)</td>
<td>0.067</td>
<td>0.62 (0.50–0.73)</td>
<td>0.04</td>
<td>0.59 (0.46–0.72)</td>
<td>0.02</td>
</tr>
<tr>
<td>Native T2</td>
<td>0.81 (0.73–0.89)</td>
<td><0.001</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

The comparative performance of each sequence to discriminate between health and disease controls and all patients for native T1, post-contrast T1 and ECV, using ROC-curve analysis to derive AUC.

Statistical analysis

Statistical analysis was performed using SPSS software (SPSS Inc., Chicago, IL, USA, version 23.0). Normality of distributions was tested using Wilks-Shapiro statistic. Categorical data are expressed as percentages, and continuous variables as mean ± SD or median (interquartile range), as appropriate. Comparisons of the means between groups were performed using one way ANOVA (with Bonferroni post hoc tests for the differences from controls). Associations between variables were detected by bivariate linear regression analyses. Repeatability of measurements were assessed using intraclass-correlations (ICC). Receiver operating characteristic (ROC) curves were used in discrimination between health and disease. All values are reported as mean±SD and a P-value of less than 0.05 was considered statistically significant.

Results

A total of 83 subjects completed the imaging protocol with the 3 T1 mapping sequences. Subject characteristics and CMR results are presented in Supplementary data online, Table S1. Groups were similar for age, gender, heart rate and diastolic blood pressure, whereas the body-mass index and systolic BP were significantly higher in AS patients. Compared to controls, both patient groups had significantly higher indexed left ventricular (LV) volumes, LV mass, left atrial size, and lower LV and RV ejection fraction (P < 0.05 for all). All patients with AS has increased LV wall thickness ≥12 mm, measured in diastole. Non-ischaemic LGE was present in a total of 10 NIDCM (31%) and 5 AS (20%) patients. Patients had significantly higher mean E/e' on transthoracic echocardiography, as well as the levels of serological cardiac biomarkers.

Native T1 and ECV data show progressively larger imprecision and variation in normal controls from MOLLI to shMOLLI to SASHA (see Supplementary data online, Table S2). Compared with controls, native T1 and ECV were significantly higher in both patient groups for MOLLI and shMOLLI sequences (P < 0.01), whereas SASHA only revealed a significant difference between controls and patients with NIDCM. Post-contrast T1 values were significantly different for the MOLLI sequence but not shMOLLI or SASHA (Table 2). Native T2 was raised in NIDCM and AS patients, significantly in the latter group.

ROC curves in discrimination between health and disease (all patients) are presented in Figure 1, with respective area under the curves [AUCs], 95% confidence interval (95% CI)] for all T1 mapping indices and sequences listed in Table 1. Native T1 for MOLLI showed the greatest ability to discriminate between health and disease [AUC: 0.94 (0.88–0.99), P < 0.001; comparisons of AUCs: MOLLI vs. shMOLLI, SASHA and T2: P = 0.064, P < 0.001, P = 0.01, respectively]. Native T2 also showed a strong ability to differentiate between health and disease [AUC: 0.81 (0.73–0.89), P < 0.001]. Native T1 by MOLLI was an independent discriminator between health and disease (χ² = 52, P < 0.001).

Results of myocardial histology and associations with T1 mapping indices are presented in Table 2 (Figures 2 and 3). Procedurally, all EMBs were uneventful (n = 12). The mean histological CVF was 25.6% (intersubject IQR 10.1–43.2%, SD 18.6). There was an excellent agreement between the two observers (r = 0.95, P < 0.01; MD ± SD = 5.9 ± 4.6). Correlations between CVF with all T1 mapping indices for various sequences are included in Table 2 (Figure 4).

Discussion

We demonstrate that T1 mapping sequences differ considerably in their performance in myocardial tissue characterization, as evidenced by differential ability to discriminate between health and disease and by diverse associations with myocardial CVF and T2 mapping. More specifically, our findings reveal that native T1 using MOLLI sequences show an excellent diagnostic performance in detecting the differences in myocardium between controls and patients. Myocardial T1 mapping with MOLLI sequences showed the strongest relationship with histologically derived CVF and with T2 mapping.

A number of previous studies reported on associations with tissue collagen content or discrimination between health and disease (summarized in Figure 4, modified from). We expand these findings by comprehensive and standardized intraindividual acquisition of more than one sequence and analysis of all T1 indices. Compared with a previous reports we found similar associations for native T1 with CVF for shMOLLI. For MOLLI, previous studies reported diverse
Associations for native T1 and CVF ranging between 0.15 and 0.77,1 and our results add to the favourable side of that range. Associations for ECV, however, were much lower for both shMOLLI13,24 and MOLLI.34 Several possible reasons may explain these findings, especially the type of sequences, given the implementation and optimization of shMOLLI and SASHA on a new vendor platform. The use of motion correction, types of post-processing softwares and approaches, the type and dose of gadolinium contrast, histological dyes, reading methods, etc., may all influence the measurements. The severity of myocardial damage can vary considerably between the patients included at the different sites; which in such small samples may be a major factor. Although the biopsies were performed during open-heart surgery, inclusion of replacement fibrosis during the tissue sampling is difficult to control. This complication of human EMBs in introducing the sampling errors is also well recognized.32,35 We strived for exclusion of LGE given our strong focus on the diffuse myocardial disease, yet, we acknowledge that definition of ‘diffuse’ will depend on the spatial resolution of the LGE technique allowing to differentiate localized patterns of fibrosis from the remaining tissue, unlike averaging them within one voxel. The post-processing approach in studies that have not accounted for the regional variations or inadvertent inclusion of blood partial volume in myocardial T1 values,30,31,36 may reveal different results than in the studies using conservative septal ROI15,26,37. The discriminatory power of ECV values may also suffer from dependency on two separate measurements. Finally, the association between CVF and ECV by

Figures 1: Native T1 (A), post-contrast T1 (B), and ECV (C) in discrimination between health and disease for three sequences in all patients against healthy controls using ROC curve analysis.
Table 2 Summary of studies reporting on association between CVF and T1 mapping indices modified and adapted from\(^1\) (with permission)

<table>
<thead>
<tr>
<th>Collagen volume fraction(%)</th>
<th>Sequence</th>
<th>Pearson (r) (Sig)</th>
<th>No. of patients (cardiac disease)</th>
<th>GCAs (dose and type)</th>
<th>T1 Index</th>
<th>Histological staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic stenosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flett et al.(^{21})</td>
<td>GRE-IR</td>
<td>0.94 (0.001)</td>
<td>18 (0.2 mmol/kg gadoterate meglumine)</td>
<td>ECV (EQ)</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>Bull et al.(^{22})</td>
<td>shMOLLI</td>
<td>0.655 (0.002)</td>
<td>19</td>
<td>Native T1</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>Fontana et al.(^{23})</td>
<td>GRE-IR</td>
<td>0.78 (<0.01)</td>
<td>18 (0.2 mmol/kg gadoterate meglumine)</td>
<td>ECV (EQ)</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>White et al.(^{24})</td>
<td>shMOLLI</td>
<td>0.83 (<0.01)</td>
<td>18 (0.2 mmol/kg gadoterate meglumine)</td>
<td>ECV (bolus)</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>de Meester de Ravenstein et al.(^{25})</td>
<td>MOLLI (3(3)(3)(3)(5) (FA35(^{7}))</td>
<td>-0.15 (0.64)</td>
<td>12 (0.2 mmol/kg gadobutrol)</td>
<td>Native T1</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>Lee et al.(^{26})</td>
<td>MOLLI</td>
<td>0.77 (<0.01)</td>
<td>10</td>
<td>Native T1</td>
<td>Masson-trichrome</td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iles et al.(^{27})</td>
<td>VAST</td>
<td>-0.7 (0.03)</td>
<td>9 (IHD)</td>
<td>Post-contrast T1</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>Sibley et al.(^{28})</td>
<td>Look-Locker</td>
<td>-0.57 (<0.001)</td>
<td>47 (NICMs)</td>
<td>Post-contrast T1</td>
<td>Masson trichrome</td>
<td></td>
</tr>
<tr>
<td>Mascherbauer et al.(^{29})</td>
<td>GRE-IR</td>
<td>-0.98 (<0.01)</td>
<td>9 (HFPPEF)</td>
<td>Post-contrast T1</td>
<td>Masson</td>
<td></td>
</tr>
<tr>
<td>Miller et al.(^{30})</td>
<td>MOLLI</td>
<td>0.199 (0.437)</td>
<td>6 (IHD)</td>
<td>Native T1</td>
<td>Picrosirius red</td>
<td></td>
</tr>
<tr>
<td>Aus dem Siepen et al.(^{31})</td>
<td>MOLLI (3(3)(3)(3)(5) (FA 35(^{7}))</td>
<td>0.85 (0.01)</td>
<td>45 (DCM)</td>
<td>ECV (bolus)</td>
<td>Acid Fuchsin Orange-G</td>
<td></td>
</tr>
<tr>
<td>Iles et al.(^{32})</td>
<td>VAST</td>
<td>0.73 (<0.001)</td>
<td>4 (1 IHD, 3 DCM)</td>
<td>LGE</td>
<td>Masson</td>
<td></td>
</tr>
<tr>
<td>Kammerlander et al.(^{33})</td>
<td>MOLLI</td>
<td>0.493 (<0.002)</td>
<td>36 (mixed group)</td>
<td>ECV (bolus)</td>
<td>Tissue FAXS</td>
<td></td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>Flett et al.(^{21})</td>
<td>R(^{2}) = 0.62(0.08), Tau = 0.52</td>
<td>8</td>
<td>ECV</td>
<td>Picrosirius red</td>
<td></td>
</tr>
</tbody>
</table>

Continued
MOLLI found in the present study \((r = 0.498) \) compares favourably to the result using tissue FAXS technology \((r = 0.493) \).

A further interesting finding is the correlation of T1 indices with T2 mapping. This observation communicates an important influence of transverse relaxation, which appears to be captured within the myocardial T1 mapping, consistent with previous reports highlighting the proneness of MOLLI variants to the T2-related errors.\(^2\) The effect of magnetization transfer (MT) in MOLLI variants, may be resulting from acquisition of multiple images after each preparation pulse.\(^3,\)\(^2\)\(^0\)\(^,\)\(^3\)\(^8\) The difference in FA between implementation of our MOLLI sequence\(^1\)\(^0\)\(^,\)\(^2\) vs. ShMOLLI\(^3\) \((50\% \text{ vs. } 35\%) \) explains the greater SNR and possibly also the more pronounced T2 and MT effects for MOLLI. Whereas the development of techniques, which are highly accurate for T1 with minimal contamination by T2 or MT or other effects is important for post-contrast T1 acquisitions (i.e. ‘true T1 mapping’), the advantages of the T2-proneness for native T1 mapping—high precision and diagnostic accuracy, yielding higher sensitivity to myocardial pathophysiology, can from the clinical standpoint not be overlooked. Clearly, further research is warranted to elucidate these clinically relevant effects.

Lastly, we reveal for the first time that in AS, myocardial native T2 is significantly raised. As it is not significantly associated with myocardial collagen content, it may suggest myocardial oedema.\(^3\)\(^9\)–\(^4\)\(^2\) A body of evidence substantiates the role of inflammatory cellular and extracellular processes in myocardial plasticity and remodelling in response to increased LV wall stress,\(^3\)\(^9\)–\(^3\)\(^4\) including a reactivation of hypertrophic foetal gene programme with phenotypical expression of natriuretic peptides, such as NT-pro BNP, which was also found elevated in the present study.\(^4\)\(^4\)–\(^4\)\(^7\) Increased hs-troponin and CRP levels and relationship with T1 and T2 indices in AS patients may lend

Table 2 Continued

<table>
<thead>
<tr>
<th>Collagen volume fraction%</th>
<th>Sequence</th>
<th>Pearson r (Sig)</th>
<th>No. of patients (cardiac disease)</th>
<th>GCAs (dose and type)</th>
<th>T1 Index</th>
<th>Histological staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen volume fraction%</td>
<td>VAST</td>
<td>-0.71 (0.01)</td>
<td>8</td>
<td>(0.2 mmol/kg gadopentetate dimeglumine)</td>
<td>Post-contrast T1 Masson-trichrome</td>
<td></td>
</tr>
</tbody>
</table>

Types of sequences and a staining method used, as well as numbers of patients included, is also reported. GCAs, gadolinium contrast agents; IHD, ischaemic heart disease; HFpEF, heart failure with preserved ejection fraction; NICM, non-ischaemic cardiomyopathy; GRE-IR, gradient echo-inversion recovery; VAST, variable sampling of k-space in time.

Figures 2

Representative images of patients with AS—Case 1. (A) Histological analysis with Mason Trichrome reveals mild-moderate interstitial fibrosis (CVF = 16%). MOLLI measurement reveal native T1 1068 ms (B) and ECV = 26%. Cine imaging in mid-systole: 3-chamber (C), LVOT (D) view and AV valve view, revealing significantly reduced AV opening (AV area by planimetry 0.56 cm\(^2\)). There is no evidence of late gadolinium enhancement (f). NTproBNP 634 ng/L.
Figures 3 Representative images of patients with AS—Case 2. (A) Histological analysis with Mason Trichrome reveals considerable myocardial fibrosis (CVF 37%). MOLLI measurement in mid-ventricular SAX slice show native T1 1130 ms (B) and ECV 32%. Cine imaging in mid-systole: 3-chamber (C), LVOT (D) view and AV valve view, reduced AV opening (AV area by planimetry 0.37 cm²). Evidence of non-ischaemic late gadolinium enhancement in basal anteroseptal and inferolateral segments—red arrows (green arrow points to the basal RV structures, including RV outflow tract and pulmonary valve) (E). NTproBNP 1381 ng/L.

Figure 4 Correlations between T1 mapping measurements and histologically derived CVF—native T1 (A–C) and ECV (D–F).
matrix remodelling in hypertrophic cardiac conditions.

We demonstrate that T1 mapping indices and sequences differ in their bioequivalence for detection of abnormal myocardium, which is a further support to the notion that myocardial oedema, alongside interstitial fibrosis, represents a detectable process in extracellular matrix remodelling in hypertrophic cardiac conditions.

Study limitations
A few limitations apply. This is a single centre, single-vendor and single field-strength comparison study in a sample size, which is based on the previous studies using the identical MOLLI sequence. EMIs were performed within the conservative constraints of ethical approval for an invasive procedure performed purely for research purposes. We strived to include a sufficient number of patients required to achieve a significant correlation for native T1 with MOLLI sequence (type I error; $x < 0.05$) (Type II error; $\beta = 0.8; n = 8$), which was also reconfirmed by a post hoc analysis. However, the sample size was not powered to inform on the superiority of correlations between the mapping techniques. The study-design, i.e. head-to-head comparison, and standardized approach to imaging and histology obtained within the same subject, eliminates several important methodological biases, which make comparisons between studies using single techniques difficult. We believe that our results provide a useful guide to the type of much needed evidence, required to support an informed clinical use of T1 mapping sequences.

Conclusions
We demonstrate that T1 mapping indices and sequences differ in their bioequivalence for detection of abnormal myocardium, which is characterized by diffuse interstitial myocardial fibrosis. Native T1 with MOLLI sequences provides the strongest discriminatory accuracy in characterization of human myocardium.

Table 3 Correlations between T1 and T2 mapping indices and serological markers in AS patients ($n = 25$) using Pearson correlation (r-statistic)

<table>
<thead>
<tr>
<th></th>
<th>AS patients ($n = 25$)</th>
<th>NIDCM patients ($n = 34$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T2 mapping (ms)</td>
<td>NT-proBNP</td>
</tr>
<tr>
<td>MOLLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native T1 (ms)</td>
<td>0.628**</td>
<td>0.404*</td>
</tr>
<tr>
<td>Post-contrast T1 (ms)</td>
<td>-0.22</td>
<td>-0.470*</td>
</tr>
<tr>
<td>ECV (%)</td>
<td>0.248*</td>
<td>0.327</td>
</tr>
<tr>
<td>SiMOLLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native T1 (ms)</td>
<td>0.459**</td>
<td>0.379*</td>
</tr>
<tr>
<td>Post-contrast T1 (ms)</td>
<td>-0.16</td>
<td>-0.311</td>
</tr>
<tr>
<td>ECV (%)</td>
<td>0.236*</td>
<td>0.234</td>
</tr>
<tr>
<td>SASHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native T1 (ms)</td>
<td>0.211</td>
<td>0.095</td>
</tr>
<tr>
<td>Post-contrast T1 (ms)</td>
<td>0.027</td>
<td>-0.055</td>
</tr>
<tr>
<td>ECV (%)</td>
<td>0.471</td>
<td>0.032</td>
</tr>
<tr>
<td>Native T2</td>
<td>0.414*</td>
<td>0.366*</td>
</tr>
</tbody>
</table>

P-value of < 0.05 was statistically significant; * P < 0.05, ** P < 0.01.

Supplementary data
Supplementary data are available at European Heart Journal - Cardiovascular Imaging online.

Acknowledgments
We would like to acknowledge the support of Cardiology and Cardiothoracic Surgery departments at Guy’s and St Thomas’ and King’s College Hospitals NHST Trusts; cardiac radiographers for obtaining the high-quality imaging studies; Philips Clinical Scientists for support; David M. Higgins, PhD; Bernhard Schnackenburg, PhD; Christian Stehning, PhD; Eltjo Haselhoff, PhD.

Funding
Department of Health through the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St. Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHST Foundation Trust. Histological comparisons in aortic stenosis patients were supported by Medical Research Council - Confidence in Concept 2012’ administered through King’s Health Partners project grant (MR/JBACR). N.C. was funded by an educational grant from St. Jude Medical. VP, EN, SD, MR-M are supported by the German Centre of Cardiovascular Research (DZHK).

Conflict of interest: None declared.

References

