










Figure 2—Penalized logistic regression analysis of the associations of 29 serum miRNA concentrations with diabetic retinopathy. Asso-
ciation with incident diabetic retinopathy in PREVENT-1 (A). Association with progression of diabetic retinopathy in PROTECT-1 (B). Models
included age, sex, and diastolic blood pressure as unpenalized covariates. The graph shows b-coefficients for different levels of penal-
ization (l1, estimated in 100 steps) and is truncated at a l1 of 3; hence, not all measured miRNAs are plotted. The black dashed line
indicates the optimal tuning parameter l1 evaluated using 10,000 fivefold likelihood cross-validations. The descriptive table shows the
direction of association and the percentage of cross-validated models that included the respective miRNA.
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and miR-320a: SEMA6A and NRP1, respectively. SEMA6A is
a negative regulator of mitogen-activated protein kinase sig-
naling, known to increase transcription of angiogenic effec-
tor genes (14). NRP1 is a coreceptor for vascular endothelial
growth factor (VEGF) and SEMA, promoting EC prolifera-
tion and microvessel density (15). Forty-eight hours after
transfection, luciferase activity was found to be decreased by

;30% and 40% in SEMA6A and NRP1, respectively (Fig. 4A
and B). Thereby, the functionality of miRNA mimics was
confirmed through silencing expression of known targets.

Proteomics for miRNA Target Identification
We have demonstrated recently that direct and indirect
targets can be identified in a broader proteomics screen,

Figure 3—Standard logistic regression analysis and meta-analysis of the association of miR-27b and miR-320a with diabetic retinopathy and
TSP-1 as common target in ECs. Association of miR-27b and miR-320a with diabetic retinopathy in PREVENT-1, PROTECT-1, and both studies
combined. Associations of miR-27b and miR-320a with diabetic retinopathy were adjusted for each other plus age, sex, and diastolic blood
pressure. SDs were defined in control subjects. Study-specific results were combined using random-effects meta-analysis. OR, odds ratio.

Figure 4—Proteomics for miRNA target identification. Luciferase reporter assays to confirm functional miRNA mimics. Suppression of
SEMA6A (A), a known target of miR-27b, and NRP1 (B), a target of miR-320a. Spectral counts of TSP-1 as quantified by mass spec-
trometry in the secretome of ECs transfected with miR-27b (C ) and miR-320a (D) compared with mimic controls. Error bars represent
SEM. *P < 0.05 in three independent experiments, **P < 0.01.
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including targets that would not have been anticipated
based on current bioinformatics prediction models (11,16).
To complement our clinical studies, we used a proteomics
approach to identify putative protein targets of miR-27b
and miR-320a in the secretome of ECs. HUVECs were
stimulated with PMA to induce exocytosis of Weibel-Palade
bodies, an endothelial cell–specific storage organelle, allow-
ing for protein analysis by mass spectrometry. Among
.650 proteins identified (Supplementary Table 3), only

TSP-1 showed differential secretion from both miR-27b–
and miR-320a–transfected ECs, relative to control trans-
fected cells (Fig. 4C and D). The proteomics data were
independently validated by ELISA (Fig. 5A). Similar results
were obtained in HRECs after miR-27b or miR-320a over-
expression (Fig. 5B). An alignment of the thrombospondin-1
gene (THBS-1) mRNA region with the sequence of miR-320a
and miR-27b is shown in Fig. 6A. The vertical bars and
bold characters indicate sequences of the miR-320a– and

Figure 5—Validation of the proteomics findings by ELISA. Reduced secretion of TSP-1 in the endothelial secretome upon transfection with
mimics of miR-27b and miR-320a. HUVECs after 45 min of PMA stimulation in serum-free medium (A) and HRECs after overnight serum
deprivation in the presence of endothelial supplements (B). *P < 0.05.

diabetes.diabetesjournals.org Zampetaki and Associates 223

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-0389/-/DC1


miR-27b–binding site of the THBS-1 target gene. As
expected for direct miRNA targets, there was comple-
mentarity between the miR-27b seed-matching sequence
and the 39-untranslated region of the THBS-1 target
gene. According to one algorithm (miRWalk), TSP-1
was also predicted as a target for miR-320a. The putative
seed-binding region, however, was within the coding re-
gion of the THBS-1 gene. To further confirm the func-
tionality of these predicted interactions, we fused the
putative binding regions within the THBS-1 target gene
to a luciferase reporter vector. Coexpression of synthetic
miR-27b, but not miR-320a, decreased THBS-1 reporter
activity (data not shown), confirming TSP-1 as a direct
target of miR-27b (17) and an indirect target of miR-
320a (Fig. 6B).

DISCUSSION

Using data from two independent prospective cohorts, we
identified miR-27b and miR-320a as potential biomarkers
for new-onset retinopathy or progression of retinopathy
in patients with T1D. Both miR-27 and miR-320a
have previously associated with metabolic syndrome and type
2 diabetes (18) and have been implicated in angiogenesis,

providing a mechanistic underpinning for the observed
association with diabetic retinopathy in the DIRECT
cohort (9).

Retinopathy in T1D
Retinopathy remains the most frequent and most feared
complication of T1D (19). It is associated with elevated
risks of other diabetes complications, notably, nephropa-
thy and cardiovascular disease (20). Although acknowl-
edged as a vascular phenomenon, the only intervention
proven to date to reduce onset or progression of retinop-
athy is tight glycemic control. This is difficult to achieve
and is associated with elevated risks of hypoglycemic
episodes. Significant numbers of individuals with T1D
continue to progress to severe, possibly sight-threatening
disease even in the presence of good glycemic control.
There is therefore a need to discover novel biomarkers
that identify individuals at high risk of progressive reti-
nopathy and targets for therapeutic intervention.

miRNAs in T1D
miRNAs may offer distinct advantages over other bio-
markers (8): Unlike messenger RNAs, miRNAs are stable
in blood. As nucleic acids, miRNAs can be measured by

Figure 6—Angiogenic miRNAs. Alignment of THBS-1 mRNA region with miR-320a and miR-27b (A). Relative abundance of miR-320a and
miR-27b in ECs and suppression of TSP-1 secretion as a shared molecular pathway (B). Circulating miRNA changes in patients with T1D
and retinopathy, however, may represent markers of a milieu that is conducive to pathological angiogenesis rather than a local release from
the retina.

224 Angiogenic microRNAs and Diabetic Retinopathy Diabetes Volume 65, January 2016



quantitative PCR methodology allowing the multiplexing
of several miRNAs in a single experiment. Thus far, the
role of miRNAs in diabetic retinopathy progression has
been assessed in small animal models (21–26). Moreover,
an miRNA-dependent cross talk between HIF1a and
VEGF was reported in the diabetic retina (27). In this
study, we show that miR-320a and miR-27b are associ-
ated with new-onset retinopathy or progression of reti-
nopathy in patients with T1D. These findings were
unaltered by excluding participants with incident persis-
tent or intermittent microalbuminuria at any time during
the follow-up.

Mechanistic Links to Angiogenesis
Besides its potential prognostic and diagnostic value,
miRNAs may participate in an unexplored mechanism
contributing to retinopathy in patients with T1D. Several
miRNAs can target the same effector. Diverse miRNAs
can also act cooperatively or redundantly to regulate the
effectors of the same biological process. miR-320a regu-
lates glycolysis and represses angiogenic factors, including
Flk1, VEGFc, insulin-like growth factor 1, insulin-like
growth factor 1 receptor, and fibroblast growth factor
(28,29). miR-320a has also been implicated in tumor
angiogenesis by silencing NRP1 (30). miR-27b is thought
to promote angiogenesis by targeting antiangiogenic genes
(31), including the transmembrane protein SEMA6A. The
miR-23/-27/-24 gene clusters are enriched in ECs and
highly vascularized tissues (32). miR-27b orchestrates en-
dothelial tip cell formation (33,34). By analyzing protein
targets of miR-27b and miR-320a in ECs, we obtained a
more comprehensive depiction of the interactions and
regulatory feedback loops between angiogenic proteins
and our candidate miRNAs.

Proteomics Approach for miRNA Target Identification
The “targetome” of most miRNAs remains an unexplored
aspect of current biology. Currently, the available miRNA
target prediction tools are based on an incomplete under-
standing of miRNA target recognition and miRNA efficacy.
Bioinformatic methodologies reveal numerous putative tar-
gets, but only one of five of the in silico predictions is
correct, and experimental confirmation is essential. Pro-
teomics methods can be useful for identifying miRNA
targets at the protein level in addition to the use of bio-
informatics prediction algorithms. We have pursued a
proteomics approach to compare the effects of miR-27b
and miR-320a on the secretome of ECs (10). TSP-1 was
returned as a common target of both miR-27b and
miR-320a (35). TSP-1 is an extracellular matrix protein,
which inhibits EC proliferation, migration, and angiogen-
esis (36). Its antiangiogenic effect is mediated through an
interaction with VEGF, specifically, via inhibition of VEGF
receptor-2 activation through engaging its receptor CD47
(37). This has further been supported in vivo, specifically,
in the eye: depletion of TSP-1 resulted in corneal neo-
vascularization in mice (38). Of particular significance
to diabetic retinopathy, a biphasic response of TSP-1

mediated through VEGF occurred in microvascular cells in
the ischemic retina (39). This response tightly regulates
VEGF and therefore indicates a potential negative feed-
back mechanism of VEGF-induced angiogenesis through
TSP-1 (39). By now, several studies have implicated TSP-1
in pathological angiogenesis in the retina (40–42). TSP-1
has been shown to inhibit neovascularization in diabetic
mice (43). Moreover, miR-27b rescued impaired angiogen-
esis via TSP-1 suppression (17). Our findings confirm that
miR-27b directly suppresses reporter activity for TSP-1.
In contrast, miR-320a has an indirect effect on TSP-1
secretion.

Strengths and Limitations of the Study
Our study was prospective and, hence, measured miRNA
levels before occurrence of the disease outcome. Using a
nested case-control approach, we identified 155 partic-
ipants with retinopathy incidence/progression among
DIRECT trial participants (overall n = 3,326) and compared
miRNA profiles with those of matched control subjects.
Associations were independent of established risk factors
for diabetic retinopathy, including age, sex, HbA1c, diabe-
tes duration, and blood pressure, and were further under-
pinned by our biologically plausible finding from the
proteomics analysis that both miRNAs target TSP-1. Still,
whether miR-27b and miR-320a are causally involved in
diabetes retinopathy or a marker of this disease remains
to be clarified. The identified miRNAs are not retina spe-
cific. The changes in miR-27b and miR-320a may reflect
a systemic predisposition for pathological angiogenesis.
The cause for the differential regulation of circulating
levels of miR-27b and miR-320a is currently unclear. For
many biomarkers, the cellular origin remains uncertain. For
example, both ECs as well as platelets secrete TSP-1. Mea-
suring its circulating levels does not reveal how much of
TSP-1 is endothelial or platelet derived. The same limita-
tion applies to miRNAs that are not tissue specific and
detected in the circulation. Both miR-320a and miR-27b
are also present in platelets (6). The opposing direction-
ality of the association of miR-27b and miR-320a with
diabetic retinopathy could hint to a different cellular or-
igin of these two circulating miRNAs; i.e., miR-320a is
secreted at much higher levels from ECs than miR-27b.
Further studies are required to provide an in-depth un-
derstanding of their cellular origin and to test the diag-
nostic or therapeutic potential of these two circulating
miRNAs in diabetic retinopathy. We measured miRNA
levels only at baseline and, hence, could not assess or take
into account within-person variability of the miRNAs over
time. Finally, model selection and parameter estimation were
performed on the same data set without adjustment, which
may lead to an overestimation of the strength of association
obtained and underestimation of confidence limits.

Conclusions
Understanding how circulating miRNAs could be har-
nessed for assessing the risk of retinopathy in T1D is an
essential area of research. Our data in the DIRECT trials
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show that miR-320a and miR-27b are associated with new
onset of retinopathy and progression of retinopathy.
Besides identifying circulating miRNAs associated with
retinopathy, we also interrogated the targets of miR-27b
and miR-320a in ECs using a proteomics approach. Taken
together, the findings of our study identify miRNA bio-
markers for retinopathy in two independent cohorts.
These findings await confirmation in larger studies, but our
two lead miRNAs may have clinical utility given their
established links to angiogenesis, including the translational
control of TSP-1 by miR-27b and its reduced endothelial
secretion by miR-320a.
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