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ABSTRACT  

Systems biology approaches including proteomics are becoming more widely used in 

cardiovascular research. In this review article, we focus on the application of proteomics to 

the cardiac extracellular matrix. Extracellular matrix remodelling is a hallmark of many 

cardiovascular diseases. Proteomic techniques using mass spectrometry provide a platform 

for the comprehensive analysis of extracellular matrix proteins without a priori assumptions. 

Proteomics overcomes various constraints inherent to conventional antibody detection. On 

the other hand, studies that use whole tissue lysates for proteomic analysis mask the 

identification of the less abundant extracellular matrix constituents. In this review, we first 

discuss decellularization-based methods that enrich for extracellular matrix proteins in cardiac 

tissue, and how targeted mass spectrometry allows for accurate protein quantification. The 

second part of the review will focus on post-translational modifications including hydroxylation 

and glycosylation and on the release of matrix fragments with biological activity (matrikines), 

all of which can be interrogated by proteomic techniques.  

 

Keywords:  

Cardiovascular diseases, extracellular matrix, post translational modifications, proteomics, 

systems biology 

 

 

 

 

  

by guest on S
eptem

ber 16, 2016
D

ow
nloaded from

 



 3 

1. INTRODUCTION  

Proteomic techniques using mass spectrometry (MS) provide a platform for the 

comprehensive analysis of proteins, thereby facilitating the implementation of systems biology 

approaches and circumventing the limitations of a traditional, reductionist approach adopted 

by techniques like Western blotting that are based on a priori assumptions of the proteins to 

be investigated. Furthermore, proteomics is without the constraints of antibody-dependent 

protein detection and has the capability of detecting post-translational modifications (PTMs), 

which is beyond the means of gene expression platforms1.  

Tissue fibrosis is a hallmark of most cases of cardiovascular disease (CVD) and 

includes modification and deposition of extracellular matrix (ECM). However, detailed studies 

on cardiovascular ECM have been sparse due to the lack of analytical tools that facilitate 

comprehensive characterization of its components. In recent years, proteomics has been 

successfully applied to study the ECM, providing unprecedented insights into its biology and 

pathological remodeling2-5. In the present review, we describe the utility of ECM proteomics 

as applied to cardiovascular research and the potential pitfalls. In addition, we highlight the 

means to overcome common proteomic challenges and present translational applications of 

proteomic datasets.  

2. THE EXTRACELLULAR MATRIX IN CARDIAC DISEASE  

The ECM not only confers mechanical stability, but is also a reservoir for bioactive molecules. 

Remodelling of the ECM, including quantitative but also qualitative changes in composition, is 

a hallmark of CVD. Numerous studies have demonstrated that structural, but also non-

structural ECM proteins play crucial roles during disease progression and normal cardiac 

physiology.  

Table 1 summarizes important findings in clinical studies as well as in animal models 

of cardiac disease5-42. Additional studies reported ECM proteins as potential biomarkers for 
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different cardiac pathologies43; these have been intentionally omitted from the Table, the focus 

of which are ECM and ECM-associated proteins (i.e. extracellular proteases and non-

structural proteins that bind to or regulate ECM) from a functional perspective. Most proteins 

included in the Table were individually studied using antibodies and loss-of-function models 

in order to assign their relevance to disease. Proteomics can quantify most of these ECM 

proteins in a single experiment, leading to the identification of previously unreported links 

between ECM components in disease2-4. For example, in a recent study we demonstrated that 

genetic deletion of biglycan was accompanied by an unexpected rise of aggrecan in murine 

aortas44. 

3. “IN ANTIBODIES WE TRUST”  

Until recently, the identification of proteins in a tissue or a protein lysate has been 

limited by the availability of antibodies that recognise certain portions (epitopes) of a protein 

of interest. Antibodies have been and continue to be an important component of the 

armamentarium for protein research but they are not without limitations. While antibody arrays 

overcome the restriction to only one protein, ECM proteins tend to be under-represented in 

arrays. The main issues of antibody-based protein quantification, however, remain the same: 

1) Usually only a small portion of the protein (epitope) is recognised by an antibody. Protein 

detection by antibodies relies on the presence of unmodified epitopes. In ECM proteins, 

however, common PTMs include hydroxylation, glycosylation or fragmentation. Due to epitope 

masking, ECM proteins may not be detectable by antibodies. 2) Antibodies are often not 

commercially developed to target proteins in species beyond the commonly used mice and 

rats such as canine and porcine models for myocardial infarction2,45,46, rabbit and goat models 

for studies involving atrial fibrillation9,47-49 and sheep as models of dilated cardiomyopathy50. 

While some anti-human or anti-mouse antibodies will cross-react, many others will not 

recognize their target protein in different species or will display a high degree of non-specific 

binding. Vice versa, proteins in the bovine serum supplements of cell cultures can be detected 

not only in the conditioned media but also in the cell lysates51.  
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Contrary to antibodies, proteomics does not rely on recognition of one specific epitope 

and can be applied across species. Moreover, the use of MS allows for determination of 

changes that occur at the protein level (i.e. amino acid modifications) (Figure 1). For example, 

we demonstrated using MS that the C-terminus of decorin, a small leucine-rich proteoglycan, 

is often cleaved in the left atrium but not in the ventricle52. MS data provided an explanation 

why the use of different antibodies for the same target protein yielded very different results 

(Figure 2).  

4. EXTRACELLULAR MATRIX REVISITED BY PROTEOMICS  

Proteomics is the study of the complete protein component of a living organism, tissue or cell 

and yields unbiased data without a priori knowledge. The workhorse of modern proteomics is 

the mass spectrometer and although it is not a new technology per se, it was for a long time 

confined to areas outside the biological sciences. However, it was the advent of matrix-

assisted laser desorption ionization (MALDI)53 and in particular of electrospray ionization 

(ESI)54 - which enables liquid chromatography (LC) systems to be interfaced directly to mass 

spectrometers - that MS branched from analytical chemistry into biology. 

The gold standard for contemporary proteomics is LC-tandem MS (LC-MS/MS). 

Briefly, the LC column separates the peptides (typically generated by digesting proteins with 

trypsin) in the analyte prior to ionisation and subsequent MS analysis. In addition to recording 

the mass of the peptide ions, MS/MS technologies induce the subsequent fragmentation of 

these precursor ions. The masses of these fragment ions can therefore be used to delineate 

the amino acid sequence of the peptide. The availability of annotated protein sequence 

databases and algorithms that match the observed MS/MS spectra to protein entries have 

been crucial for the biomedical application of MS to study proteins55,56. MS data can also be 

aligned to databases generated using DNA or RNA sequences to infer amino acid sequences. 

Current MS technologies now allow for the characterization of the ECM composition and 

turnover in CVD in unprecedented detail that is not possible using other techniques2-5,52,57-59.  
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5. EXTRACTION OF EXTRACELLULAR MATRIX PROTEINS  

Over the past years our group has focused on ECM remodelling in cardiac2,52, 60,61 and 

vascular tissues3,4,57,59 using proteomics. In a previous review, we highlighted the potential of 

proteomics when applied to systems biology62. A recent review by Chang et al has focused 

on clinical applications of ECM proteomics (i.e. biomarker discovery and tissue engineering)63. 

In this review, we discuss how MS can be used to assess ECM composition in CVD. 

Contemporary mass spectrometers have exceptional sensitivity, providing detection at 

attomole concentrations64. However, such sensitivity is largely confined to pure solutions and 

not yet achievable in complex biological samples. For example, the dynamic range of proteins 

present in plasma spans 10 orders of magnitude (e.g. 4x1010 pg/ml for albumin compared to 

few pg/ml for some interleukins)65. Current MS instrumentation can only resolve 4-6 orders of 

magnitude. While proteomics offers a comprehensive analysis of high abundant proteins it 

has not yet overcome the difficulties of analysing low abundant proteins in complex samples. 

Unlike PCR or antibody-based techniques, proteomics lacks the ability to amplify low 

abundant proteins to aid detection and instead relies on enriching the target proteome.  

For instance, cardiac ECM proteins are markedly less abundant than cytosolic and 

mitochondrial proteins46. Thus, studies that use whole tissue lysates for proteomic analysis 

inevitably mask the identification of the less abundant ECM constituents. With cardiac tissue 

this is exacerbated due to the higher cellular content2. Accordingly, methods that enrich for 

ECM proteins have received considerable interest of late and principally focus on removing 

plasma contaminants and soluble cellular proteins57,66.  

While the inherent insolubility of many ECM proteins lends itself to effective enrichment 

by decellularization, subsequent proteomic analysis requires all proteins to be solubilized. 

Standard lysis buffers are not effective for ECM solubilisation. Instead, we implemented a 

stepwise extraction of vascular ECM proteins57. This involves treating vascular tissues with 

sodium chloride (NaCl) to remove plasma proteins and extract loosely bound extracellular 
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proteins before decellularizing the tissue with sodium dodecyl sulphate (SDS). Each 

incubation step takes 4 hours. Solubilisation of mature ECM proteins is finally achieved by 

treatment with guanidine hydrochloride (GuHCl) which destabilizes the ionic, disulfide-

dependent protein conformations in large aggregating proteoglycans (versican, aggrecan, 

etc), small proteoglycans (decorin, biglycan, etc), cell-attachment glycoproteins such as type 

VI collagen, fibronectins, laminins and basement membrane components67. The method was 

later adapted for the use in porcine cardiac tissue by reducing the incubation time for NaCl 

and prolonging the SDS treatment2 (Figure 3A). In smaller animal models (i.e. mouse, rat) 

cardiac cellularity is proportionally higher compared to that of larger animal models such as 

pig or goat (Figure 3B). With increased cellularity, decellularization is more difficult to achieve 

and may require additional enrichment steps, i.e. for glycoproteins or glycopeptides52.  

Others have adopted similar workflows to extract ECM proteins in a number of 

tissues2,57,66,68-70. Of note is the Texas 3-step extraction method by Lindsey’s group66. In their 

method, applied to mouse hearts, a similar sequential extraction consisting of NaCl and GuHCl 

extraction steps as well as the SDS decellularization2,4,57 are performed. In addition, the Texas 

3-step method includes further extraction of the insoluble protein pellet after incubation in 

GuHCl for 48 hours. Notably, the vast majority of ECM proteins are identified in the GuHCl 

fraction. The pellet, however, contains few polymerized proteins, which are not extracted by 

our “English Quickstep” method (Figure 3C).  

In a recent proteomics study, Johnson TD et al studied the human cardiac ECM71. 

Decellularization was achieved after perfusion with high SDS concentration (i.e. 10 times 

greater than that used in our protocol) for more than 3 days. This yields a simplified ECM 

amenable as a biomaterial, but the ECM proteins will be denatured and ECM-associated 

proteins will be lost during prolonged incubation with such a high concentration of detergents. 

The study of ECM using MS approaches described below, requires a gentler extraction 

method that strikes a balance between removal of cellular components while preserving ECM-

associated proteins. 
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6. DISCOVERY PROTEOMICS  

Discovery proteomics refers to the use of proteomics as a hypothesis-free tool to globally 

profile the proteome of a given sample. In discovery proteomics, bottom-up or shotgun 

proteomics is based on the analysis of peptides generated after enzymatic digestion of a 

protein mixture. Digested peptides are separated by LC before MS/MS analysis. In 

comparison to gene expression analysis ECM proteomics offers certain advantages. First, 

many diseases manifest over years. Therefore, although transcript levels provide a window 

into cellular activity at the time of harvest, they merely provide an indirect assessment of 

protein synthesis at a single time point. When studying dynamic entities such as the ECM, 

transcript levels become more extraneous, particularly as nascent ECM proteins are 

incorporated into the existing matrix, and actual ECM protein abundance is determined by the 

balance of protein synthesis, deposition and degradation. 

There are multiple MS approaches that can be applied to yield accurate quantitation. 

However, each approach comes with distinct trade-offs62. Label-free methods can provide 

relative quantification in simpler mixtures. In complex mixtures, isotopic labelling should be 

employed, which allows multiplexing of samples. For instance, stable isotope labelling with 

amino acids in cell culture (SILAC) is based on metabolic labelling of proteins in vitro with 

amino acids containing heavy (e.g. 13C) stable isotopes. Fully labelled SILAC mice have also 

been generated72. Methods for protein labelling are based on the use of isobaric tags, such 

as isobaric tags for relative and absolute quantitation (iTRAQ) or tandem mass tag (TMT)73. 

Isobaric tags have the same chemical structure but different isotope substitutions. When 

samples are labelled with different tags, they can be subsequently mixed in equal portions, 

and the protein abundance from the different samples can be assessed by comparing the 

abundance of peptides labelled with the different tags in a single LC-MS/MS run. Although 

these methods overcome issues such as technical reproducibility, labelling is only introduced 

after protein extraction and therefore, unlike SILAC, isobaric tags do not allow for in vivo 

labelling but have been used for quantitative comparisons using tissue samples74,75. 
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7. TARGETED PROTEOMICS  

The discovery proteomics approach is largely limited by the scan speed as peptides are 

selected for fragmentation based on abundance. This stochastic process results in a bias 

towards the more abundant proteins62. In contrast to discovery proteomics, targeted 

proteomics focuses on specific proteins. This is useful when a predetermined group of targets 

are of interest (e.g. ECM proteins). Proteotypic peptides unique to these proteins are 

quantified in what is known as selected reaction monitoring (SRM) or multiple reaction 

monitoring (MRM)76. The targeted approach increases selectivity, sensitivity and accuracy and 

enables simultaneous measurement of hundreds of transitions in a single LC-MS/MS run76. 

The transitions for proteotypic peptides will be interrogated as a surrogate of total protein 

levels, but peptides not included in the search (e.g. non-annotated PTMs) are not detected55. 

This approach is particularly useful to detect CVD biomarkers, as Domanski et al 

demonstrated in a study that also included ECM biomarkers of fibrosis77. Moreover, targeted 

proteomics constitutes a robust method to validate findings obtained from discovery 

experiments (Figure 4)3. 

8. POST-TRANSLATIONAL MODIFICATIONS  

ECM proteins are often modified by PTMs1, most notably hydroxylation and glycosylation.  

8.1. Collagen hydroxylation. Collagens are the major fibril-forming proteins in the ECM and 

they consist of a basic triple-helical conformation. The triple helix increases molecular stability 

and provides resistance to tensile stress. Although many types of collagen exist, a consistent 

pattern can be observed for amino acid sequences of all collagens; each chain contains 

enriched triplet repeats consisting of the sequence X-Pro-Gly. Prolines within these domains 

become hydroxylated under the action of prolyl-hydroxylases78. Hydroxyprolines provide the 

substrate for the formation of hydrogen bonds between the adjacent collagen alpha chains. 

Prolyl-4-hydroxylases and prolyl-3-hydroxylase catalyze the hydroxylation of specific proline 

residues. The former enzyme reacts on proline with the minimum sequence X-Pro-Gly and 
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the latter appears to require a Pro-4-Hyp-Gly (Hyp is hydroxyproline) sequence78,79. 

Hydroxylation is a stable, non-reversible PTM that adds +15.99 Da (i.e. an oxygen atom) to 

proline. X-Pro-Gly domains are rare in ECM proteins other than collagens, and this confers 

specificity to the acquisition of this PTM. 

Similar to prolyl-hydroxylases, lysyl-hydroxylases catalyze the hydroxylation of lysine, 

which is critical for collagen stability. The specifics of lysine hydroxylation are beyond the 

scope of this review, and are discussed elsewhere80. Adding hydroxylation as a variable 

modification, dramatically improves identification and quantification of collagen levels in 

disease3,68. Ascorbic acid (vitamin C) is a key cofactor for prolyl-4-hydroxylase, and its 

deficiency causes defects in collagen assembly81. Inhibition of this enzyme has been shown 

to affect left ventricular remodeling after myocardial infarction in rats82. In this study only 

proline:hydroxyproline ratios were assessed. MS provides assessment of hydroxylation with 

concomitant assignment to specific collagen types.  

8.2 Glycosylation. Glycosylation is an enzymatic process through which a glycan is 

covalently attached to a second biomolecule. Glycosylation is a very common form of PTM of 

ECM proteins. Attached glycans affect ECM protein structure and function by influencing its 

folding, solubility, aggregation and/or degradation behaviour83. Indeed, aberrant glycoforms 

are already approved as biomarkers for cancer84. In cardiac tissue, Montpetit et al showed 

that aberrant glycosylation of extracellular domains alters ion channels activity85.  

There are two main glycosylation types in mammals: N-glycosylation occurs at the 

carboxamido nitrogen on asparagine residues (Asn) of secreted/membrane proteins within the 

consensus sequence Asn-Xaa-Thr/Ser, where Xaa is any amino acid except for proline86. The 

second main type of glycosylation is O-glycosylation, in which sugar residues attach to serine 

and threonine residues (Ser, Thr) or, to a much lesser extent to hydroxyproline and 

hydroxylysine87. The latter two are particularly abundant in collagens and add an additional 

level of regulation to collagen biosynthesis. If both present, O-glycosylation occurs after N-
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glycosylation. Moreover, O-glycosylation is not restricted to secreted proteins and to date, no 

consensus sequences have been identified for this PTM88. ECM proteins may be extensively 

modified by addition of N- and O-linked large and repetitive glycosaminoglycans (GAGs) and 

shorter and diverse N- and O-linked oligosaccharides. Aberrant glycosylation can lead to 

pathological abnormalities and disease. In the last decade, proteomics has emerged as a 

powerful platform to characterize glycosylation profiles of ECM proteins, including the 

cardiovascular field52,58,89. There are two major strategies that can be used to study 

glycoproteins (Figure 4):  

Indirect MS methods for determining glycosylation profiles. A common large-

scale strategy utilizes a glycopeptide or glycoprotein enrichment step followed by glycan 

removal. Glycopeptides are usually enriched using lectins, hydrophilic interaction LC, 

hydrazide or graphite. The method of choice will determine the type of glycopeptides that will 

ultimately be enriched90,91. After enrichment, PNGase-F is used to enzymatically remove the 

glycan moiety from asparagine residues, serving two purposes: Firstly, the core peptide can 

be analysed without interference from sugars during MS/MS and secondly, PNGase-F via a 

deamidation reaction converts the asparagine to aspartic acid. This conversion is 

characterized by a 0.984 Da mass shift that can be detected using MS. Moreover, if the 

reaction is performed in the presence of H2
18O, it instead leads to a 2.99 Da mass shift, 

indicative for the presence of glycosylation at that position. Using this methodology in rat 

hearts, Parker et al. identified 1556 N-linked glycosites from 972 protein groups58. This study 

provided information on the changes in glycosylation following ischemia and reperfusion. 

Enzymatic deglycosylation allows for the separate analysis of the core protein and glycan92, 

but the link between the glycans and peptides is lost. 

Direct MS methods for determining glycan structures. The combined analysis of 

the glycan motif (glycomics) and the protein identification (proteomics) forms the field of 

glycoproteomics. For such analysis, proteins in the sample are first digested into peptides, 

followed by glycopeptide enrichment using zwitterionic hydrophilic interaction LC (ZIC-
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HILIC)93 or alternative approaches91,94. Recently, the combination of higher energy collision 

dissociation (HCD) and electron transfer dissociation (ETD) have facilitated direct MS analysis 

of glycopeptides. HCD fragmentation mostly breaks glycosidic bonds, whereas ETD preserves 

the glycan attachment and fragments the peptide backbone, providing peptide sequence 

information89. Direct analysis of intact glycopeptides has rarely been applied in the 

cardiovascular context. Our first study by Yin et al characterised the glycopeptides of 

secretomes from human endothelial cells89. More recently, we have characterized the 

glycosylation profile of human cardiac ECM proteins52. 

8.3. Reversible PTMs on ECM proteins. Glycosylation and hydroxylation are among the 

most common PTMs in ECM proteins. Importantly, they constitute non-reversible 

modifications, but reversible PTMs such as phosphorylation and sulfonation also occur. For 

example, the transmembrane collagen XVII can be phosphorylated and this mechanism 

regulates shedding of its ectodomain95. Similarly, phosphorylation of osteopontin inhibits 

vascular calcification96. In a seminal study by Lundby et al97 proteomics was used to identify 

phosphosites on fourteen different rat tissues including hearts. Phosphopeptides were 

enriched using titanium dioxide. Notably, many previously unrecognized phosphosites were 

reported in ECM proteins including several collagens and non-collagenous ECM proteins such 

as laminins, fibronectin, versican and decorin to name a few. This methodology was effective 

on fresh animal tissues, but has yet to be applied to the context of cardiac disease. Challenges 

to its application will include preservation of short-lived PTMs in patient samples and during 

sample preparation.  

9. FRAGMENTATION OF EXTRACELLULAR MATRIX PROTEINS  

Proteolytic fragmentation of ECM proteins by secreted proteases controls their localisation, 

activation and interaction, adding an additional layer of regulation for tissue processes. Using 

experimental data, databases/algorithms such as MEROPS and PROSPER have been 

created to calculate probability matrices for target protease sequences98-100. This is a valuable 
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resource for research and is particularly useful when used in conjunction with proteomics. 

Standard proteomics pipelines work with digested protein mixtures (i.e. trypsin digestion) to 

screen for the abundance of proteins in a tissue. Trypsin cleaves C-terminally to lysine (Lys, 

K) or arginine (Arg, R) residues. However, proteases other than trypsin can be present in 

samples and the endogenous proteolytic activity may give rise to non-tryptic peptides. In a 

study from Stegemann et al, we described a number of proteolytic targets for various MMPs 

in the vasculature after addition of these proteases to vascular tissue explants59. 

When searching for protease targets, appropriate controls are needed (i.e. healthy or 

non-digested tissues) in order to avoid reporting artefactual cleavages that may arise from 

experimental processing, or identifying those that are part of normal physiological turnover. 

Moreover, the addition of broad-spectrum protease inhibitors during extraction reduces the 

chance of producing artefactual fragmentation. More sophisticated methods include free C- or 

N-terminal labelling of endogenous protease-generated fragments prior to digestion for MS 

analysis101. For example, the TAILS proteomics approach (isotope-based N-terminal labelling) 

has been successfully applied by Prudova et al. to analyse the degradome of MMP-2 and 

MMP-9102. The same authors used a similar methodology to characterize the degradation of 

proteolytic fragments in human platelets103. Ultimately, after identification of cleavage sites, 

targeted proteomics can be used to study the abundance of ECM fragments in clinical 

samples.  

Specific biological activities have been attributed to certain ECM proteolytic fragments 

(Figure 5)5,19,52,104-122. The term matrikines has been proposed for these fragments. This 

should not be confused with the term matricryptins, which is more accurately applied to ECM 

protein domains that are unexposed (and therefore inactive) unless the protein is subject to 

fragmentation-derived conformational changes. For example, C-terminal cleavage of 

collagens XV and XVIII, generates restin and endostatin, respectively. Both fragments exert 

anti-angiogenic activity in vivo119. Other collagen types also generate biologically active 

fragments, e.g. collagens IV and VI, which are highly expressed in the cardiac ECM2, as 
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reviewed elsewhere123. The large proteoglycan versican is cleaved by proteases from the 

MMP and ADAMTS families124. Versikine is generated by N-terminal cleavage of versican by 

ADAMTS-1/4, and influences cell proliferation and apoptosis locally113. Endorepellin, a C-

terminal peptide from perlecan exerts anti-angiogenic effects120. Last, non-structural ECM 

proteins also release fragments, e.g. the small leucine-rich proteoglycan decorin releases 

decorunt and other fragments, that exert local regulatory roles over cytokines and growth 

factors52,107,117. Recently, we demonstrated that decorin is fragmented in the cardiac ECM. We 

detected C- and N-terminal non-tryptic cleavage sites on decorin by MS. The resulting 

cleavage products may regulate growth factor availability52. Using similar approaches, the 

Lindsey group identified cleavage products derived from collagen I that promote scar 

formation after MI5. 

10. CONCLUSIONS  

The application of MS constitutes one of the biggest technological advances introduced to 

protein research. It offers an unbiased platform to analyse global protein expression and holds 

potential in facilitating novel insights. As recently highlighted in a scientific statement of the 

American Heart Association55; it is anticipated that proteomics research will further our 

understanding of mechanisms of CVD with one important aspect being the elucidation of ECM 

composition in healthy and diseased cardiovascular tissues. To achieve this goal, 

bioinformatics approaches should be applied for interpreting the protein datasets and extract 

the biologically relevant information. Undoubtedly, the amount of data generated by 

proteomics represent an analytical challenge. In this regard, special attention should be paid 

to ECM fragments as they hold potential for two purposes: from a diagnostic perspective, they 

leak from tissues and when released into the blood stream can be used as biomarkers for 

CVD. Secondly, since many ECM fragments are biologically active, they not only hold 

enormous potential as therapeutic targets but also as modifiable therapeutic agents – to date 

an underexplored avenue of cardiovascular medicine.  
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FIGURE LEGENDS  

 

Figure 1. Antibody limitations. Detection by antibodies relies on binding to specific regions 

(epitopes) of the target protein. PTMs such as glycosylation or fragmentation may hinder 

epitope accessibility. Antibody A recognises permanently non- glycosylated regions and 

always yields detection independently of sugar removal (left panel). Antibody B recognises 

epitopes in the vicinity of potentially glycosylated regions. Therefore, recognition is only 

achieved after deglycosylation (DG). If fragmentation occurs, only antibody C, which 

recognises an intact region, reveals a degradation pattern. Antibody D targets a region 

affected by fragmentation and can only detect the intact epitope. Consequently, information 

about degradation is missed. Proteomics interrogates peptides across the whole sequence 

and allows for consideration of variable modifications at the amino acid level. Different protein 

forms can therefore be identified and quantified. 

 

Figure 2. MS to explain discrepancies between different antibodies. An antibody against 

a C-terminal epitope (green on left panels, red on right panels) detects a markedly lower 

abundance for decorin in the atrium. An antibody against a different epitope (green on right 

panel) shows no differences in abundance. This is explained by cleavage of decorin at the C-

terminus, which was detected in the atrium using MS. 

 

Figure 3. Enrichment of cardiac ECM proteins. A) Our previously published 3-step ECM 

extraction method for cardiac tissue is based on decellularization and ensures enrichment and 

detection of ECM proteins. The image shows a decellularized heart after prolonged SDS 

perfusion. The ECM is solubilized by guanidine hydrochloride (GuHCl) and analysed using 

proteomics. B) Smaller species display higher levels of cardiac cellularity as measured by the 

ratio of 3 members of different ECM protein classes and the cardiac-specific troponin T. C) 

Proteins identified in murine hearts using the Texas 3-step66 extraction method compared to 
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those identified by our previously published method (see Drozdov et al61). Most proteins are 

identified by both methods. Unlike the Texas 3-step method, our “English Quickstep” method 

did not include an analysis of the remaining pellet after GuHCl extraction.  

 

Figure 4. MS strategies for ECM characterisation. Untargeted proteomics is appropriate 

for discovery experiments where no a priori information is available. When a delimited number 

of targets of interest are known a priori, targeted proteomics offers a robust method for 

detection and quantification. Novel MS methods such as a combination of HCD and ETD allow 

for characterisation of complex PTMs including glycosylation.  

 

Figure 5. Biological activity of ECM fragments. Fragments derived from a variety of ECM 

proteins (i.e. matrikines) exert functions that regulate diverse cellular and tissue processes. 

Proteomics offers a tool for the analysis of known ECM fragments as well as the discovery of 

previously unknown fragments with functions potentially important for cardiac physiology and 

putative therapeutic targets. * Indicates putative fragments with activities only characterised 

after exogenous administration. 
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Table 1. Role of ECM and ECM-associated proteins in cardiac disease.  

   Protein Clinical context Main findings 

Adiponectin Cardiac remodelling (m)  Induces cell migration, MMP activation, and collagen remodeling  via APPL1-AMPK signalling6 

ADAMTS9 Developmental defects (m) Haploinsufficiency leads to reduced versican cleavage, associated with cardiac anomalies7. 

Biglycan MI (m) Required for adaptive remodelling8 

Cathepsin-K AF (h, rb) 
Increased levels and activity accompanied atrial changes linked to the AngII/ATR1R signalling 
pathway9 

Cathepsin-S MI (m) Mediates fibroblast trans-differentiation during remodelling10 

Collagen I Dilated cardiomyopathy (m) Point mutation induces cardiomyopathy11 

Collagen VI MI (m) Absence improves cardiac function, structure, and remodelling12 

Collagen XIV Developmental defects (m) Important for growth and structural integrity of the myocardium13 

Collagen XV Hypertension (m) Necessary for remodelling. Deficiency predisposes to cardiomyopathy14 

Connective tissue 
growth factor 

Pressure overload (m) Inhibition attenuates left ventricular remodeling and dysfunction15 

Decorin 
Left ventricular assist device  
implantation (h) 

Ameliorates adverse remodeling by mediating transforming growth factor-beta inhibition16 

 MI (m) Absence leads to abnormal scar tissue formation17 

Fibronectin MI (m, h) Essential for progenitor cell response during cardiac repair18 

 MI (m) Lack of EDA domain promotes survival and prevents adverse remodelling19 

Fibulin-2 MI (m) Loss protects against progressive ventricular dysfunction20 

Laminin alpha-4 Dilated cardiomyopathy (h, z) Mutations cause human cardiomyopathy via defects in cardiomyocytes and endothelial cells21 

Lumican  Hypertrophy (m) Deficiency results in cardiomyocyte hypertrophy with altered collagen assembly22 
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Mimecan MI (m, h) Prevents cardiac dilatation and dysfunction collagen strengthening23 

MMP-14 Pressure overload (m) Mediates pro-fibrotic signalling, leading to alterations in interstitial fibrosis and diastolic function24 

MMP-28 MI (m) Deletion exacerbates cardiac dysfunction and rupture by inhibiting M2 macrophage activation25 

TIMP-2 Pressure overload (m) Loss leads to exacerbated left ventricular dysfunction and adverse ECM remodeling26 

MMP-9 AF (p, h) Increased gelatinase activity contributes to atrial ECM remodelling27,28 

 MI (h,m) Crucial for generation of bioactive collagen I fragments that promote scar formation after MI5 

 MI (m) Deletion leads to decreased collagen accumulation and left ventricular enlargement29 

MMP-2 MI (m, r) Contributes to ischemia-reperfusion injury, and deletion/inhibition prevents cardiac rupture30,31 

Osteopontin MI (m) Deletion leads to left ventricular dilation and reduced collagen deposition after MI32 

Periostin MI (r) Blockade of Exon 17 preserves cardiac performance33  

 Diabetic cardiomyopathy (r)  Elevated expression of periostin in diabetic cardiomyopathy and the effect of valsartan34 

Perlecan Developmental defects (m) Perlecan is critical for heart stability35 

SPARC MI (m) Mediates early ECM remodeling36 

Tenascin-C Pressure overload (m) 
Accelerates fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-
6 axis37 

 MI (m) May aggravate left ventricular remodelling and function38 

Thrombospondin-1 Pressure overload (m) Protects myocardium by modulating fibroblast phenotype and matrix metabolism39 

 MI (d, m) Role in preventing expansion of healing myocardial infarcts40 

Thrombospondin-4 Pressure overload (m) Regulates myocardial fibrosis and remodelling41 

Versican  Developmental defects (m) Associated with chamber specification, septation, and valvulogenesis in the developing heart42 
 

Abbreviations used: MI, myocardial infarction; AF, atrial fibrillation; m, mouse; h, human; rb, rabbit; z, zebrafish; r, rat; p, pig; d, dog
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