

Gene Network and Proteomic Analyses of Cardiac Responses to Pathological and Physiological Stress

Ignat Drozdov, Athanasios Didangelos, Xiaoke Yin, Anna Zampetaki, Mélanie Abonnenc, Colin Murdoch, Min Zhang, Christos A. Ouzounis, Manuel Mayr, Sophia Tsoka and Ajay M. Shah

Circ Cardiovasc Genet. 2013;6:588-597; originally published online November 8, 2013; doi: 10.1161/CIRCGENETICS.113.000063 Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2013 American Heart Association, Inc. All rights reserved. Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circgenetics.ahajournals.org/content/6/6/588

Data Supplement (unedited) at:

http://circgenetics.ahajournals.org/content/suppl/2013/11/08/CIRCGENETICS.113.000063.DC1.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Cardiovascular Genetics* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Cardiovascular Genetics* is online at: http://circgenetics.ahajournals.org//subscriptions/

Gene Network and Proteomic Analyses of Cardiac Responses to Pathological and Physiological Stress

Ignat Drozdov, PhD; Athanasios Didangelos, PhD; Xiaoke Yin, PhD; Anna Zampetaki, PhD; Mélanie Abonnenc, PhD; Colin Murdoch, PhD; Min Zhang, PhD; Christos A. Ouzounis, PhD; Manuel Mayr, MD, PhD; Sophia Tsoka, PhD; Ajay M. Shah, MD, FMedSci

- *Background*—The molecular mechanisms underlying similarities and differences between physiological and pathological left ventricular hypertrophy (LVH) are of intense interest. Most previous work involved targeted analysis of individual signaling pathways or screening of transcriptomic profiles. We developed a network biology approach using genomic and proteomic data to study the molecular patterns that distinguish pathological and physiological LVH.
- *Methods and Results*—A network-based analysis using graph theory methods was undertaken on 127 genome-wide expression arrays of in vivo murine LVH. This revealed phenotype-specific pathological and physiological gene coexpression networks. Despite >1650 common genes in the 2 networks, network structure is significantly different. This is largely because of rewiring of genes that are differentially coexpressed in the 2 networks; this novel concept of differential wiring was further validated experimentally. Functional analysis of the rewired network revealed several distinct cellular pathways and gene sets. Deeper exploration was undertaken by targeted proteomic analysis of mitochondrial, myofilament, and extracellular subproteomes in pathological LVH. A notable finding was that mRNA–protein correlation was greater at the cellular pathway level than for individual loci.
- *Conclusions*—This first combined gene network and proteomic analysis of LVH reveals novel insights into the integrated pathomechanisms that distinguish pathological versus physiological phenotypes. In particular, we identify differential gene wiring as a major distinguishing feature of these phenotypes. This approach provides a platform for the investigation of potentially novel pathways in LVH and offers a freely accessible protocol (http://sites.google.com/site/cardionetworks) for similar analyses in other cardiovascular diseases. *(Circ Cardiovasc Genet.* 2013;6:588-597.)

Key Words: computational biology ■ genetics ■ genomics ■ proteomics

Tearts under chronic hemodynamic disease stress develop Lpathological left ventricular hypertrophy (LVH), a complex remodeling response that predisposes to heart failure.¹ Pathological remodeling is associated with interstitial fibrosis, cardiomyocyte apoptosis, contractile dysfunction, and arrhythmia.² The heart also remodels with chronic exercise or pregnancy, but such physiological LVH is unaccompanied by fibrosis, apoptosis, or significant contractile dysfunction and carries no risk of failure.3 Delineation of the molecular mechanisms driving these divergent responses may inform therapeutic strategies for pathological LVH and heart failure. Much work has focused on targeted investigation of specific signaling pathways in the pathogenesis of physiological or pathological LVH and revealed novel insights.¹ However, few novel therapies have emerged, and complementary approaches for target discovery need to be considered.4

Clinical Perspective on p 597

Network-based analyses of disease phenotypes involve systems-level characterization of biological mechanisms to uncover the complex relationships between genes or proteins and their environment.⁵ Analysis of the functional architecture of gene and protein networks that orchestrate disease development might provide a useful foundation for novel therapeutic approaches.⁶ Indeed, such approaches have begun to yield positive results in areas such as oncology,⁷ but have only recently been applied to cardiac disease.^{8,9} Previous studies used microarray experiments to explore gene expression differences in cardiac hypertrophy.¹⁰ Such studies reported that genes associated with pathological hypertrophy included inflammatory, apoptotic, fetal reprogramming, and oxidative stress pathways whereas genes associated with physiological hypertrophy affected metabolism and insulin signaling.¹¹

United Kingdom. E-mail ajay.shah@kcl.ac.uk © 2013 American Heart Association, Inc.

Circ Cardiovasc Genet is available at http://circgenetics.ahajournals.org

Received February 12, 2013; accepted October 30, 2013.

From the Cardiovascular Division, King's College London BHF Centre of Research Excellence, School of Medicine, James Black Centre, London, United Kingdom (I.D., A.D., X.Y., A.Z., M.A., C.M., M.Z., M.M., A.M.S.); and Department of Informatics, School of Natural and Mathematical Sciences, King's College London, London, United Kingdom (I.D., C.A.O., S.T.). Current address for C.A.O.: Computational Genomics Unit, Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thessalonica, Greece, and Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.

The online-only Data Supplement is available at http://circgenetics.ahajournals.org/lookup/suppl/doi:10.1161/CIRCGENETICS.113.000063/-/DC1. Correspondence to Ajay M. Shah, MD, King's College London, James Black Centre, Denmark Hill Campus, 125 Coldharbour Ln, London SE5 9NU,

However, a global framework of the mechanisms driving similarities and differences between these phenotypes is lacking.

We developed a network-based genomic and proteomic framework for comparing gene coexpression networks underlying pathological and physiological LVH. Comprehensive characterization of network properties allowed us to identify that a large number of genes were differentially wired in pathological LVH. Integration of transcriptomic data of pathological LVH with a proteomic analysis of mitochondrial, myofilament, and extracellular subproteomes allowed the establishment of geneprotein relationships for individual loci and entire pathways. This comprehensive analysis at transcriptome and proteome levels reveals novel insights into the molecular basis of pathological versus physiological LVH and provides a resource for further studies of genotype–phenotype relationships in this condition.

Methods

Detailed methods are provided in the online-only Data Supplement.

Gene Expression Analysis

Six mouse microarray data sets (n=127 arrays) were obtained from ArrayExpress (Table 1).¹² Raw gene expression was processed using robust multi-array average, and each array was inspected for outlying samples. Affymetrix probe identifiers were mapped to corresponding Entrez gene identifiers.¹³

Graph Theory Methods

Reverse Engineering Gene Coexpression Networks

Gene coexpression networks were reconstructed by expressing pairwise similarity in expression profiles by the Pearson correlation coefficient (PCC). Gene pairs that correlated above a predefined PCC threshold were represented as an undirected unweighted network, where nodes correspond to genes and links (edges) correspond to coexpression between genes. We used a data-driven computational method to calculate the appropriate PCC threshold for each microarray data set.

Network Topology

Node degree denotes the number of links a node has to other nodes. Nodes with high degree in biological networks (or hubs) are reported to be essential for processes such as cell survival.¹⁴ Betweenness centrality is the number of shortest paths that pass through a node. Nodes with the highest betweenness represent the critical points of information flow within a network. Eigenvector centrality is a measure of overall network connectivity, denoting connections of nodes to other nodes that are central within the network. Clustering coefficient represents the number of node neighbors that are also interconnected. In protein–protein interaction networks, genes harboring disease-causing mutations tend to be distant from dense-clustering neighborhoods.¹⁵ The shortest path is the shortest distance connecting any 2 genes. The diameter is the longest short path between any pair of genes in the network.

Gene Rewiring

The number of connections of each gene (node degree) was scaled to a value between 0 and 1 by dividing each node degree by the largest degree in a network. Differential wiring of genes common to pathological and physiological networks was computed by subtracting the node degree in the physiological network from node degree in the pathological network.¹⁶ Thus, genes with positive rewiring are more central in the pathological network. compared with physiological network.

Animal Studies

Procedures were performed in accordance with the Guidance on the Operation of the Animals (Scientific Procedures) Act, 1986 (United Kingdom). Aortic constriction (AC) and running exercise were performed as described.^{17,18}

Reverse Transcription Polymerase Chain Reaction

RNA was isolated from 22 mouse LV samples (wild type [WT]-sham: n=6; AC: n=6; WT-sedentary: n=5; WT-running: n=5). Transcript expression was quantified using TaqMan probes (Applied Biosystems).

Nanoflow Liquid Chromatography–Tandem Mass Spectrometry

Liquid chromatography-tandem mass spectrometry analyses of LVs from 4 WT sham-operated mice, 4 angiotensin IIinduced hypertrophy, and 4 LVs after AC were performed as

Table 1.	Murine Cardiac Hypertrophy I	Data Sets Used for Reconstruction	of Coexpression Networks

Data Set	Description	ArrayExpress	Nodes	Edges	Degree	Clustering Coefficient
AC1	Male, time series AC (n=18)	E-MEXP-105	8688	1514278	348.6	0.29
AC2	Sham and AC (n=34)	E-GEOD-76	8688	3 272 821	753.4	0.40
AT1	Wild type; cardiac-specific AT1 receptor overexpression (n=16)	E-GEOD-2355	8688	1 303 988	300.1	0.28
Akt	Wild type; short-term cardiac-specific Akt1 overexpression (n=18)	E-GEOD-3383	8688	1 404 578	327.4	0.29
PI3K	Wild type; cardiac-specific caPI3K or dnPI3K overexpression (n=9)	E-GEOD-558	8579	1 565 558	364.9	0.33
Swimming	Wild type; short-term exercise; long-term exercise (n=29)	E-GEOD-77	8579	2367500	551.9	0.35
Pathological	Consensus pathological hypertrophy network	N/A	3634	13558	7.5	0.11
Physiological	Consensus physiological hypertrophy network	N/A	3156	4486	2.8	0.06

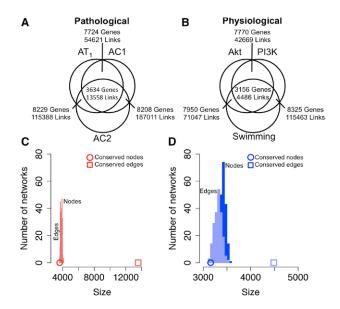
AC indicates aortic constriction; AT, angiotensin II receptor type 1; caPI3K, constitutively active phosphatidylinositol 3-kinase; dnPI3K, dominant-negative phosphatidylinositol 3-kinase; and N/A, not applicable.

described,¹⁹ with modifications. We used a novel protocol that enriches extracellular matrix (ECM)¹⁹ and myofilament²⁰ proteins (Methods in the online-only Data Supplement).

Statistical Analysis

Differential expression analysis was performed by fitting a linear model with empirical Bayes shrinkage to the log intensities of expression values for each gene.²¹ P values were adjusted to control the expected false discovery rate using Benjamini–Hochberg correction. False discovery rate–controlled values of P<0.05 were considered significant.

Results


Construction of the LVH Networks

After data preprocessing and outlier removal (Methods in the online-only Data Supplement), our analysis included 124 samples from 6 mouse microarray data sets in different models of pathological and physiological LVH (Table 1). For each data set, we created a gene coexpression matrix of pairwise PCC (Figure I in the online-only Data Supplement). Only gene pairs with significant coexpressions were considered. Because all LVH networks contained a large number of edges (≤3.3 million; Table 1), nodes and edges that may arise because of experimental variability were filtered through intersection of networks. The intersection of the 3 pathological networks contained 3634 genes and 13558 links (pathological, Tables I and III in the online-only Data Supplement) whereas the intersection of the 3 physiological networks produced comparable numbers, namely, 3156 genes and 4486 links (physiological, Tables II and IV in the online-only Data Supplement; Figure 1A). These intersections were compared against a random background by shuffling edges in the original networks 200× while preserving their degrees and then calculating their intersections. Intersections of randomized pathological and physiological hypertrophy networks contained an average of 3882.9 (SD=91.2) and 3312.6 (SD=77.7) links, respectively. Thus, the identification of 13558 and 4486 conserved coexpressions in the real pathological and physiological networks was considered a nonrandom instance against the simulated background (z score=106.13 and 15.1, respectively; Figure 1A–1D).

Hypertrophy Networks Are Phenotype Specific

We tested the phenotype specificity of the pathological and physiological networks by enriching the gene sets for established mouse mutant phenotypes using the MamPhEA tool.²² Pathological network genes were enriched for phenotypes including cardiovascular system phenotype (adjusted $P=1.6\times10^{-7}$), prenatal lethality (adjusted $P=2.9\times10^{-6}$), abnormal cardiovascular system morphology (adjusted $P=5.3\times10^{-6}$), and abnormal blood vessel morphology (adjusted $P=5.7\times10^{-4}$) whereas physiological network genes were enriched primarily for prenatal lethality ($P=4.9\times10^{-6}$; Figure 2A and 2B). Thus, the derived gene networks obtained through computational integration of the microarray expression data reflect the cardiovascular phenotype.

We examined whether the genes contributing to the cardiovascular phenotype are more connected than other genes in the pathological and physiological networks. We identified 19

Figure 1. Genome-wide transcriptional networks in pathological and physiological hypertrophy. **A** and **B**, Venn diagrams of common nodes and coexpressions in pathological and physiological hypertrophy networks. Pathological and physiological networks reflect intersections of all hypertrophic interactomes. **C** and **D**, Frequency histograms comparing sizes of the pathological and physiological networks (denoted by conserved nodes and edges) with randomly generated networks with preserved node degree distributions. The *x* axis represents number of nodes or edges whereas the *y* axis represents number of networks. AC indicates aortic constriction; AT, angiotensin II receptor type 1; and PI3K, phosphatidylinositol 3-kinase.

and 6 layers of differential connectivity in the pathological and physiological networks, respectively, by peeling²³ each gene network (Methods in the online-only Data Supplement). These layers reflect gene connectivity neighborhoods such that the first peeled layer contains genes with only a few connections whereas the last layer contains the most connected genes (Figure II in the online-only Data Supplement). Interestingly, pathological network cardiovascular genes ($\approx 22\%$) localized to the intermediate (layers 9–10) but not dense layers (Figure 2C). Conversely, physiological network cardiovascular genes localized to the densest layers (Figure 2D). This structural property of cardiovascular genes in the context of LVH phenotypes may be used to identify additional genes involved in cardiac function.²⁴

Next, we expanded the functional characterization of coexpressed genes using enrichment analysis of genes that appear only in pathological (n=1980) or physiological (n=1502) network. The pathological-specific group had a predominance of genes involved in metabolic, apoptotic, and energy production processes, with subcellular localization to mitochondria and extracellular region. In contrast, physiological-specific genes were involved in processes including angiogenesis and cell cycle (Table V in the online-only Data Supplement). Similar enrichment analysis for all pathological and physiological network genes is shown in Table VI in the online-only Data Supplement.

Topological Properties of Gene Networks

We first assessed the stability of the pathological and physiological networks to targeted removal of hubs (simulated attack)

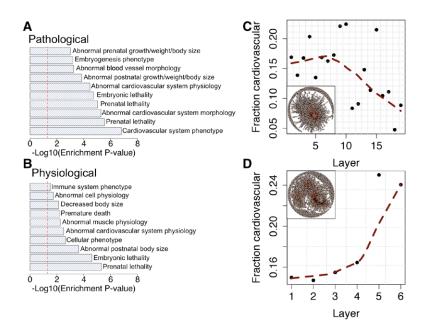


Figure 2. Phenotype specificity of the pathological and physiological left ventricular hypertrophy networks. A and B, MamPhEA-driven enrichment of genes specific to the pathological and physiological networks for phenotypes associated with mutations in these genes. Vertical red lines indicate adjusted P = 0.05. **C** and **D**, Relationships between gene coexpression layers and frequency of gene implicated in cardiovascular phenotypes identified in each layer. Increasing layer numbers correspond to regions of increasing densities in the network. Inset graphs visualize pathological and physiological gene coexpression network, with darker node colors reflecting higher gene connection densities. Dotted lines represent locally weighted scatter plot smoothing fit.

or random nodes (simulated error).²⁵ Although removal of hubs (attack) had little effect on the pathological network, the physiological network rapidly collapsed into smaller subnetworks, reflected by increasing network diameter (Figure 3A). This suggests an unexpected level of robustness of gene coexpressions in the pathological network. Removal of random genes (error) had no effect on either network diameter (Figure 3A).

Comparison of global topologies demonstrated that the pathological network is denser than the physiological network (density 0.002 versus 0.0009), with a lower network diameter (20 versus 25). Local topological properties of the networks are shown in Figure 3A–3F and listed in Tables III and IV in the online-only Data Supplement. Overall, the pathological network had a larger average node degree (7.5 versus 2.8), eigencentrality (0.03 versus 0.01), and clustering coefficient (0.11 versus 0.06) but smaller betweenness (5921.8 versus 6573) and

average shortest path length (5.7 versus 9.2; Figure 3A–3F). This topological comparison suggests that the genes under pathological stress form more coexpression links, yielding a dense and robust network. This phenomenon could reflect tight transcriptional regulation under pathological conditions.²⁶

Identification of Gene Rewiring

When the pathological and physiological networks were compared on a coexpression level, 1654 (46%) of 3634 genes in the pathological network were also present in the physiological network. However, despite this large number of common genes, the 2 networks shared only 60 coexpression links (Figure III in the online-only Data Supplement). We further assessed topological overlap between pathological and physiological networks at the gene community level. For each network, gene communities were identified by

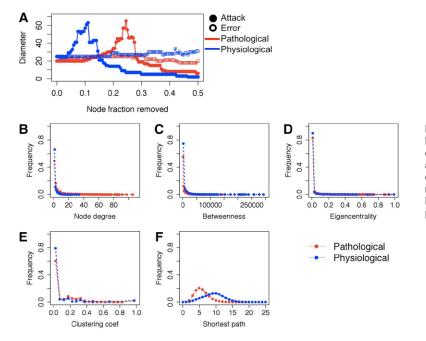


Figure 3. Topology of the pathological and physiological networks. **A**, Network diameter as a function of number of genes removed from the pathological and physiological networks. Removal of hubs (most connected genes) is labeled as attack whereas removal of random nodes is labeled as error. **B** to **F**, Frequency distributions of gene topologies in the pathological and physiological networks. optimizing network modularity (Methods in the online-only Data Supplement).²³ Similarity between gene communities was expressed using Jaccard coefficient, computed as a ratio of the number of common genes in any 2 pathological and physiological network communities to the total number of genes in these communities. Disparate and identical communities would correspond to Jaccard coefficient of 0 and 1, respectively. On average, Jaccard coefficient for 350 and 411 communities in the pathological and physiological networks, respectively, was 0.0002. Therefore, pathological and physiological networks do not share common topologies at either individual gene coexpression level or gene community level. Most of the shared coexpressions were between genes encoding ECM proteins (eg, *Col1a1*, *Col4a1*, *Col5a2*, *Col6a2*, and *Serpinf1*).

Because of the low frequency of common coexpressions between pathological and physiological networks, it is likely that a significant subset of hypertrophy-associated genes is subject to differential coexpression, or rewiring, in response to pathological stress. Consequently, differentially wired genes may contribute to phenotypic differences between pathological and physiological LVH. To construct the rewired network, subnetworks consisting of 1654 genes shared by the pathological and physiological interactomes were extracted and then merged. Because several genes were singletons (single nodes without additional coexpressions), the rewired network was reduced to 1553 genes connected by 6197 links (Figure 4A).

For each rewired gene, we calculated a differential wiring score (see Methods; Figure 4B). A score >0 indicates that a gene is more connected in the pathological network whereas a score <0 indicates greater connectivity in the physiological network. Overall, 539 and 1014 genes had positive and negative differential wiring scores, respectively (Table VII in the online-only Data Supplement). Other parameters of

local network topology (eg, betweenness centrality) are also reported in Table VII in the online-only Data Supplement.

Experimental Validation of Differentially Wired Genes

Gene rewiring can be interpreted as acquisition or loss of coexpression links in a stimulus-dependent manner. This is a direct consequence of changes in gene expression. To experimentally validate implication of differentially wired genes in LVH phenotypes, we used quantitative polymerase chain reaction to measure expression profiles of 10 rewired genes, namely, Collal, Col4al, Col5a2, Paip2b, Phtf2, Prps1, Rnf14, Serpinh1, Sparc, and Tiprl (Table 2), in mouse models of pathological (AC, n=6) and physiological (treadmill, n=6) LVH and corresponding controls (WT-sham, n=5; WTsedentary, n=5; Figure IV in the online-only Data Supplement). These genes were selected to reflect diverse ranges of differential wiring, and their respective fold changes in the microarray were not considered (Figure 4B; Table 2). Differential expression analysis confirmed that all transcripts, with the exception of Rnf14, were significantly changed in AC compared with sham-operated controls (4 downregulated, 5 upregulated; P<0.05; Table 3; Figure 4C). Indeed, Rnf14 had a low degree of rewiring of -0.002. Importantly, none of the transcripts was differentially expressed in physiological LVH compared with WT hearts (Figure 4C), which is consistent with our computational evidence of rewiring in manifestation of pathological LVH.

Functional Characteristics of Rewired Genes

Given that differentially wired genes may reflect potentially important contributors to the pathological LVH phenotype, we further analyzed these genes. Using gene mutation information from the Mouse Genome Informatics database, it was

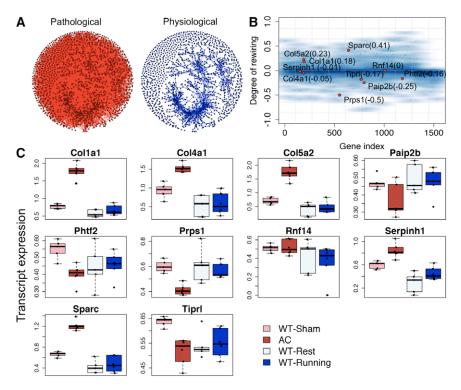


Figure 4. Rewiring of hypertrophy gene networks. A, The rewired network consisting of 1553 genes. Nodes indicate genes whereas red and blue edges correspond to pathological and physiological coexpressions, respectively. Node positions in each plot are kept constant to facilitate visualization of rewired coexpressions. B, Density map of differential wiring scores (y axis) for 1553 genes (x axis). Darker colors correspond to increased point density. Red points indicate the 10 rewired genes selected for further validation, with rewiring scores given in parentheses. C, Box plots visualizing quantitative polymerase chain reaction validation of 10 rewired genes. The y axis reflects GAPDH-normalized transcript expression values.

Symbol	Name	Function	Rewiring	Fold Change (AC vs Sham)	P Value (AC vs Sham)
Col1a1	Collagen, type I, $lpha$ 1	Collagen biosynthesis	0.18	1	9.90×10 ⁻¹⁰
Col4a1	Collagen, type IV, α 1	Collagen biosynthesis	-0.05	0.6	4.50×10 ⁻⁴
Col5a2	Collagen, type VI, α 2	Collagen biosynthesis	0.23	1.04	2.00×10 ⁻⁷
Paip2b	Poly(A)-binding protein-interacting protein 2B	Translation repressor activity	-0.25	-0.11	0.0499
Phtf2	Putative homeodomain transcription factor 2	DNA binding	-0.16	-0.15	0.0114
Prps1	Phosphoribosyl pyrophosphate synthetase 1	Nucleotide synthesis	-0.5	-0.19	0.0025
Rnf14	Ring finger protein 14	Transcription coactivator activity	0	0.006	0.938
Serpinh1	Serpin peptidase inhibitor, clade H (heat shock protein 47), member 1	Stress response	-0.01	0.25	0.0046
Sparc	Osteonectin	Collagen binding	0.41	0.55	2.00×10 ⁻⁷
Tiprl	TIP41, TOR signaling pathway regulator-like	DNA damage checkpoint	-0.17	-0.12	0.0051

AC indicates aortic constriction; and Paip2b, poly(A)-binding protein-interacting protein 2B.

noted that the rewired network included 241 (16%) genes in which null mutations result in cardiac phenotypes (eg, interleukin-1 receptor-associated kinase 1, superoxide dismutase, and vascular endothelial growth factor B). In addition, cardiovascular system phenotype and abnormal cardiovascular morphology were the most enriched phenotypes (adjusted $P=6.3\times10^{-4}$ and 1.9×10^{-3} ; Figure V in the online-only Data Supplement). Gene set enrichment of all rewired genes for Reactome pathways, as well as gene ontology biological process and gene ontology cellular component terms, revealed several distinct functional groups (Table 3), including major histocompatibility complex class II antigen presentation and tricarboxylic acid cycle and respiratory electron transport pathways with cellular localization to ECM, mitochondrial part, and stress fiber.

Functional enrichment of genes in the top 25th percentile of differential wiring (n=388 genes) identified gene ontology biological process terms such as hydrogen peroxide metabolic process and positive regulation of macroautophagy (Table VIII in the online-only Data Supplement). Interestingly, genes in the bottom 25th percentile of differential wiring were not significantly enriched.

Table 3. Top 10 Most Enriched Functional Terms in the Rewired Net	work
---	------

	React	ome		GO-I	BP		G0-	CC
Term	Estimate	Genes	Term	Estimate	Genes	Term	Estimate	Genes
MHC class II antigen presentation	0.98	21	Regulation of RNA splicing	0.82	21	Extracellular matrix	0.92	40
TCA cycle and respiratory electron transport	0.96	37	Response to metal ion	0.77	37	Cytosol	0.74	138
Mitochondrial protein import	0.78	11	Protein heterooligomerization	0.75	11	Spliceosomal complex	0.72	20
Developmental biology	0.74	66	Energy derivation by oxidation of organic compounds	0.46	66	Mitochondrial part	0.71	86
Interferon signaling (REACT_127785.1)	0.64	14	Coenzyme metabolic process	0.26	14	Extrinsic to plasma membrane	0.62	17
Platelet degranulation	0.64	21	Nucleoside triphosphate metabolic process	0.24	21	Postsynaptic membrane	0.41	16
Amino acid and derivative metabolism	0.59	41	Generation of precursor metabolites and energy	0.22	41	Stress fiber	0.32	12
Circadian clock	0.57	13	Regulation of wound healing	0.21	13	COPI-coated vesicle	0.28	6
Cytosolic tRNA aminoacylation	0.49	8	Hydrogen peroxide metabolic process	0.17	8	Actomyosin	0.27	13
Generic transcription pathway	0.45	23	Negative regulation of cellular component organization	0.16	23	Soluble fraction	0.27	49

Estimate indicates the posterior probability of term enrichment, whereby most enriched terms will be characterized by high probability estimate values; GO-BP, gene ontology biological process; GO-CC, gene ontology cellular component; MHC, major histocompatibility complex; and TCA, tricarboxylic acid cycle.

Analysis of the Extracellular and Myofilament Proteomes in Pathological LVH

The above computational analysis and quantitative polymerase chain reaction validation suggest that genes localized to the ECM and myofilaments, among others, are differentially wired in pathological LVH. Thus, we further explored these findings using a proteomic approach. LVs were obtained from 2 murine models of pathological hypertrophy-angiotensin II infusion (n=4) and AC (n=4)-and sham-operated controls (n=4). To enable a better characterization of myofilament and ECM proteins, we enriched for these subproteomes using solubility-based protein subfractionation methodologies (see Methods in the online-only Data Supplement).^{19,20} Western blotting of the subfractions confirmed that the extracts were rich in myofilament (eg, troponin I type 3 [TNNI3_ MOUSE]) and extracellular proteins (eg, collagen α -2 [VI] [CO6A2_MOUSE], glutathione peroxidase 3) whereas membrane and cytosolic proteins (eg, ITA8_MOUSE, β-actin [ACTB_MOUSE]) were depleted (Figure 5A). Subsequently, the enriched extracts were separated by SDS-PAGE, subjected to in-gel tryptic digestion, and analyzed by liquid chromatography-tandem mass spectrometry (see Methods). Two complementary approaches, spectral counting and peptide ion intensities, were used to estimate protein abundance. Quantitative information is available from both methods, which produced comparable results (Figure VI and Data Sets I and II in the online-only Data Supplement). For subsequent analysis,

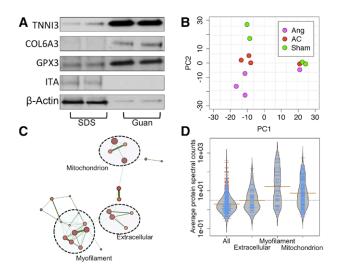


Figure 5. Proteomic profiling of pathological cardiac hypertrophy. A, Validation of the solubility-based protein subfractionation methodology in sham-operated hearts. The 4 mol/L guanidine fraction (Guan) is enriched for myofilament and extracellular proteins whereas membrane and cytosolic proteins are depleted. B, Principal component analysis (PCA) of 1300 proteins separated control hearts from angiotensin (Ang)- and aortic constriction (AC)induced cardiac hypertrophy. C, Network-based visualization of functional enrichment of 764 proteins for gene ontology (GO) cellular process. Each node represents a GO-cellular component (CC) term whereas a link represents shared proteins between terms. Analysis was performed using Enrichment Map tool (see Material in the online-only Data Supplement). D, Bean plots reflecting distributions of the average (thick horizontal line) spectral counts of mitochondrial, myofilament, and extracellular proteins in the Guan extract. GPX3 indicates glutathione peroxidase 3; ITA, integrinalpha8: PC. principal component: and TNNI3. troponin I type 3.

we focused on spectral counting-based quantification, given its greater dynamic range than peptide ion intensities (2268 versus 385 proteins).

Principal component analysis of 1300 proteins that passed filtering criteria (Methods in the online-only Data Supplement) in the proteomic data revealed a separation of sham-operated controls and hypertrophic samples (Figure 5B). Enrichment of 1300 proteins for gene ontology cellular component terms confirmed successful enrichment for myofilament (n=68) and extracellular (n=100) proteins in the extracted subproteome. In addition, mitochondrial proteins were also detected (n=292; Figure 5C). Spectral count information for the different subproteomes is visualized in Figure 5D and listed in Table IX in the online-only Data Supplement. Overall, 12 of 30 (40%), 80 of 226 (35%), and 22 of 102 (22%) rewired genes that were predicted to be myofilament, mitochondrial, and extracellular were also quantified by proteomics.

To define the relationship between changes in gene expression and protein levels, we correlated protein and mRNA expression ratios using PCC. We used the pathological microarray cohort (AC1, AC2, angiotensin II receptor type 1 data sets; Table 1) to identify 2796 mRNAs with consistent changes compared with controls across all data sets. Similarly, we identified 170 proteins with consistent changes in AC and angiotensin subproteomes compared with sham-operated mice. Subsequently, 170 protein-transcript pairs were compared using respective fold changes compared with normal, revealing a significant but relatively modest positive correlation between the proteomic and transcriptomic changes (PCC=0.25; P=0.0008; Figure 6A). Although the spectral counts of the mitochondrial subproteome did not correlate with mRNA expression (PCC=-0.19; P=0.11), myofilament and extracellular subproteomes showed stronger positive correlation (PCC=0.52; P=0.16 and PCC=0.56; P=0.03, respectively; Figures 6A). Quantitative information for mRNA-protein relationships is listed in Table X in the online-only Data Supplement. Furthermore, we calculated average fold changes of mRNAs and proteins that mapped to unique Reactome27 pathways (289

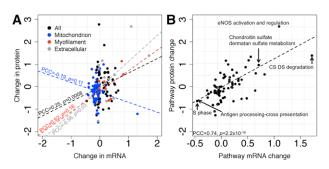


Figure 6. Correlation profiles of protein and mRNA changes in pathological cardiac hypertrophy. A, Scatter plot of changes in protein and transcript abundance (assessed using the *t* value of respective spectral counts) consisting of 170 protein–transcript pairs. Correlation was measured using the Pearson correlation coefficient. B, Correlation of mRNA and protein expressions across 289 Reactome pathway components (Table IX in the online-only Data Supplement). For each pathway that was identified in the pathological hypertrophy data set, the average mRNA and corresponding protein expression ratios were determined and plotted. CS DS indicates chondroitin sulfate dermatan sulfate; eNOS, endothelial nitric oxide synthase; and PCC, Pearson correlation coefficient.

pathways represented by 631 mRNA–protein pairs). When considered the Reactome pathway level, mRNA–protein correlation was much stronger (PCC=0.74; $P=2.2\times10^{-16}$) and across upregulated pathways such as chondroitin sulfate dermatan sulfate metabolism, chondroitin sulfate and dermatan sulfate degradation, and endothelial nitric oxide synthase activation and regulation and downregulated pathways, including S phase and antigen processing-cross presentation (Figure 6B; Table XI in the online-only Data Supplement).

Discussion

We used a combined gene network and proteomic approach to characterize pathological and physiological LVH phenotypes on a systems-wide level. This analysis shows that pathological and physiological network topologies are significantly different, with the notable finding that there is differential gene wiring in pathological versus physiological stress. This coexpression rewiring captures differences in metabolic and energy production processes, contractile fibril organization, and ECM turnover, being highly consistent with the phenotype studied. Furthermore, many of these pathways were experimentally explored at the proteome level. This network biology approach contributes novel insights into the integrated mechanisms of pathological LVH and heart failure.

Cardiac Gene Networks

Several studies have compared gene expression profiles in pathological and physiological LVH using microarray experiments.²⁸ However, there seems to be a large discrepancy in the number of genes and types of signaling pathways reported for these phenotypes. One reason may be variability in statistical prioritization of significantly regulated genes.²⁹ Thus, a comprehensive network-based meta-analysis of cardiac transcriptomes as presented here has advantages compared with conventional statistical approaches (eg, t test or ANOVA). In this study, we included relevant transcript expression data sets with multiple replicates to reduce noise. We also used an automated method for reverse engineering coexpression networks, thus eliminating selection bias typically associated with conventional statistical analysis of differential expression. Importantly, our data were combined at the level of correlation matrices rather than gene expression levels, which facilitates between-study comparisons and improves functional relevance of identified coexpressed genes.30 Functional enrichment of the pathological and physiological networks revealed significant over-representation of genes implicated in cardiovascular system phenotypes and features consistent with previous studies that reported altered fatty acid metabolism, cellular apoptosis, sarcomeric organization, and protein synthesis in pathological LVH³¹ and upregulation of cell survival, autophagy, and angiogenesis in physiological LVH.11 These findings suggest that gene network profiling captures the underlying biology of hypertrophy phenotypes.

Evaluation of gene connectivity patterns (ie, network topology) provides additional insights into organizational principles of gene networks. Compared with the physiological network, the pathological LVH network was characterized by shorter average path length and higher average node degree. Although the connectivity of either pathological or physiological network was unaffected by removal of random genes, the physiological interactome collapsed in response to the removal of hub genes whereas the pathological network remained intact. These findings suggest that under pathological stress, genes have considerably more coexpression links than under physiological stress. Biologically, this may reflect differences in transcriptional regulation between LVH phenotypes.²⁶ Recently, Dewey et al⁸ undertook a gene coexpression network analysis of pathological LVH, focusing on the extent of recapitulation of fetal gene expression programs, and could identify specific modules active during both development and disease. In contrast to that study and our previous coexpression analysis of LVH,³² in the current work, a major focus was the differential network topology comparison of pathological versus physiological LVH. The current analysis reveals that a substantial number of genes (1553) are differentially wired in pathological compared with physiological LVH. Furthermore, several functional groups of rewired genes could be identified, including those involved in electron transport, myofilament organization, and ECM remodeling. Conceptually, gene rewiring can be regarded as the acquisition or loss of coexpression links in a stimulus-dependent manner. Therefore, rewiring is a direct result of changes in expression within the network. We experimentally validated the rewiring of 10 genes involved in ECM organization (Collal, Col4al, Col5a2, Sparc), stress response (Serpinh1), and transcription and translation (Paip2b, Phtf2, Prps1, Rnf14, Tiprl) by confirming differential transcript expression of all rewired genes in pathological but not exercise models of cardiac hypertrophy. In addition, we observed no differential expression for Rnf14, a poorly rewired transcript. The functional groups of rewired genes that have been identified (Table 3) include those known to be involved in pathological LVH (eg, ECM genes, tricarboxylic acid cycle cycle, generation of precursor metabolites)33 and other categories whose function in pathological LVH has not been previously defined (eg, regulation of RNA splicing, amino acid and derivative metabolism). This suggests that the differential wiring analysis can facilitate identification of novel molecular pathways in pathological LVH. For example, Paip2b-encoded (poly(A)binding protein-interacting protein 2B) protein displaces poly(A)binding protein from the poly(A) tail of capped/polyadenylated mRNAs, thereby inhibiting translation.34 Observed downregulation of Paip2b in pathological LVH samples is consistent with increased protein turnover in pathological LVH.35 The cellular function of the Tiprl (TIP41, target of rapmycin signaling pathway regulator-like) gene has not been studied in the heart, but it was recently shown to inhibit mitogen activated protein kinase kinase7 -c-Jun N-terminal kinase activity in hepatocellular carcinoma through type 2A phosphatases.36

Consideration of gene rewiring may be a useful adjunct to traditional differential expression profiling approaches such as magnitude of fold change for several reasons. First, rewired genes are identified using data-driven analysis that, unlike differential expression profiling, does not depend on introduction of rigid significance thresholds. This is an important advantage given that predefined statistical thresholds may significantly alter microarray interpretation.²⁹ Second, because data sets are compared at the level of coexpression matrices, rewiring may be more sensitive to subtle expression changes, which are otherwise missed during conventional statistical comparison.

Finally, evaluation of rewiring patterns may uncover spatial relationships across gene neighborhoods, identifying higher-level biologically relevant pathways, thus presenting additional level of information within a microarray experiment.

Gene–Protein Relationships

An important issue is the magnitude of correlation between changes in mRNA and protein levels, which may reflect the relative importance of transcriptional regulation versus other mechanisms. To address this, we undertook a proteomics analysis focused on defined functional groups identified from the rewired gene network of pathological LVH. We analyzed the ECM and myofilament subproteome because functional gene groups encoding proteins involved in regulating these structures were identified as differentially rewired. The method used to enrich the extracellular and myofilament proteome also enriched mitochondrial proteins, which was another functional category identified as rewired. Although proteomics cannot provide a global analysis of all expressed cardiac proteins, focusing on a subproteome allowed us to identify 12 of 30 (40%), 80 of 226 (35%), and 22 of 102 (22%) rewired genes in myofilament, mitochondrial, and extracellular subproteomes. This finding confirms that enriching for specific subproteomes enhances the confidence of protein quantification.³⁷

We found a modest positive correlation between changes in mRNA levels and protein abundance when assessing these at the individual gene level, especially for the specifically enriched subproteomes (myofilament and extracellular). This could be taken to indicate that nontranscriptional mechanisms, such as alterations in protein stability, are at least as important as transcriptional regulation. However, we found that mRNAprotein relationships analyzed at the Reactome pathway level were substantially stronger. This striking finding suggests that the expression of entire pathways may be controlled at the transcriptional level³⁸ and could, in part, be a manifestation of other mechanisms such as microRNA-mediated regulation.³⁹ In addition to validating the potential of network biology and differential wiring analyses to identify real biological changes in protein abundance, this finding also suggests that the network approach may identify pathways that may not be readily detected by conventional comparisons of microarray profiles. Pathways found to be correlated at the mRNA-protein level included several known to be involved in the regulation of LVH, such as upregulation of chondroitin sulfate metabolism⁴⁰ and the endothelial nitric oxide synthase pathway⁴¹ and downregulation of S phase42 and antigen processing-cross presentation43 pathways.

Conclusions

Overall, our results represent a first attempt to provide insights into the integrated molecular mechanisms of pathological versus physiological cardiac hypertrophy by representing transcriptomic and proteomic data as biological networks. The methodology that we have developed is freely accessible at http://sites.google.com/site/cardionetworks. With the increasing availability of comprehensive omics data sets in the public domain, analytic approaches described herein may be useful for the elucidation of both general and specific mechanisms of cardiac diseases. Future expansion and modification of such methodology may be valuable in developing new therapeutic strategies or biomarkers.

Sources of Funding

This work was supported by the British Heart Foundation through awards RE/08/003 and CH//99001 (Dr Shah), a British Heart Foundation Senior Fellowship (Dr Mayr), and a PhD studentship (Dr Drozdov); a Leducq Fondation Transatlantic Network of Excellence; a National Institute for Health Research Biomedical Research Centre award to Guy's & St Thomas' National Health Service (NHS) Trust with King's College London and King's College Hospital NHS Trust; and a European Commission Network of Excellence ENFIN (contract number LSHG-CT-2005-518254) to Dr Ouzounis.

Disclosures

Dr Drozdov is a managing director at Bering Ltd. The company had no role in design, analysis, or funding of this work. The other authors report no conflicts.

References

- Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. *Nat Rev Mol Cell Biol*. 2006;7:589–600.
- 2. Towbin JA, Bowles NE. The failing heart. Nature. 2002;415:227-233.
- Catalucci D, Latronico MV, Ellingsen O, Condorelli G. Physiological myocardial hypertrophy: how and why? *Front Biosci.* 2008;13: 312–324.
- Shah AM, Mann DL. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. *Lancet*. 2011;378:704–712.
- Bandyopadhyay S, Mehta M, Kuo D, Sung MK, Chuang R, Jaehnig EJ, et al. Rewiring of genetic networks in response to DNA damage. *Science*. 2010;330:1385–1389.
- Lusis AJ, Weiss JN. Cardiovascular networks: systems-based approaches to cardiovascular disease. *Circulation*. 2010;121:157–170.
- Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. *Nat Genet*. 2007;39:1338–1349.
- Dewey FE, Perez MV, Wheeler MT, Watt C, Spin J, Langfelder P, et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure. *Circ Cardiovasc Genet*. 2011;4:26–35.
- Zhu W, Yang L, Du Z. Layered functional network analysis of gene expression in human heart failure. *PLoS One*. 2009;4:e6288.
- Rajan S, Williams SS, Jagatheesan G, Ahmed RP, Fuller-Bicer G, Schwartz A, et al. Microarray analysis of gene expression during early stages of mild and severe cardiac hypertrophy. *Physiol Genomics*. 2006;27:309–317.
- Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. *Pharmacol Ther*. 2010;128:191–227.
- Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, et al. ArrayExpress update–from an archive of functional genomics experiments to the atlas of gene expression. *Nucleic Acids Res.* 2009;37(Database issue):D868–D872.
- Watson-Haigh NS, Kadarmideen HN, Reverter A. PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. *Bioinformatics*. 2010;26:411–413.
- Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. *Nature*. 2001;411:41–42.
- Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. *Proc Natl Acad Sci U S A*. 2008;105:4323–4328.
- Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted gene coexpression network analysis strategies applied to mouse weight. *Mamm Genome*. 2007;18:463–472.
- Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. *Circ Res.* 2003;93:802–805.
- De Bono JP, Adlam D, Paterson DJ, Channon KM. Novel quantitative phenotypes of exercise training in mouse models. *Am J Physiol Regul Integr Comp Physiol*. 2006;290:R926–R934.
- Barallobre-Barreiro J, Didangelos A, Schoendube FA, Drozdov I, Yin X, Fernández-Caggiano M, et al. Proteomics analysis of cardiac extracellular

matrix remodeling in a porcine model of ischemia/reperfusion injury. *Circulation*. 2012;125:789–802.

- Yin X, Cuello F, Mayr U, Hao Z, Hornshaw M, Ehler E, et al. Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution. *Mol Cell Proteomics*. 2010;9:497–509.
- Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, ed. *Bioinformatics and Computational Biology Solutions Using r and Bioconductor*. New York: Springer; 2005:397–420.
- Weng MP, Liao BY. MamPhEA: a web tool for mammalian phenotype enrichment analysis. *Bioinformatics*. 2010;26:2212–2213.
- Clauset A, Newman ME, Moore C. Finding community structure in very large networks. *Phys Rev E Stat Nonlin Soft Matter Phys.* 2004;70(6 pt 2):066111.
- Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. *Bioinformatics*. 2005;21(suppl 1):i302–i310.
- Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. *Nature*. 2000;406:378–382.
- Zelezniak A, Pers TH, Soares S, Patti ME, Patil KR. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes. *PLoS Comput Biol.* 2010;6:e1000729.
- Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, et al. Reactome knowledge base of human biological pathways and processes. *Nucleic Acids Res.* 2009;37(Database issue):D619–D622.
- Kong SW, Bodyak N, Yue P, Liu Z, Brown J, Izumo S, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. *Physiol Genomics*. 2005;21:34–42.
- Dalman MR, Deeter A, Nimishakavi G, Duan ZH. Fold change and pvalue cutoffs significantly alter microarray interpretations. *BMC Bioinformatics*. 2012;13(suppl 2):S11.
- Aggarwal A, Guo DL, Hoshida Y, Yuen ST, Chu KM, So S, et al. Topological and functional discovery in a gene coexpression meta-network of gastric cancer. *Cancer Res.* 2006;66:232–241.
- Mandl A, Huong Pham L, Toth K, Zambetti G, Erhardt P. Puma deletion delays cardiac dysfunction in murine heart failure models through attenuation of apoptosis. *Circulation*. 2011;124:31–39.

- Drozdov I, Tsoka S, Ouzounis CA, Shah AM. Genome-wide expression patterns in physiological cardiac hypertrophy. *BMC Genomics*. 2010;11:557.
- McCurdy S, Baicu CF, Heymans S, Bradshaw AD. Cardiac extracellular matrix remodeling: fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). J Mol Cell Cardiol. 2010;48:544–549.
- Berlanga JJ, Baass A, Sonenberg N. Regulation of poly(A) binding protein function in translation: characterization of the Paip2 homolog, Paip2B. *RNA*. 2006;12:1556–1568.
- Proud CG. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res. 2004;63:403–413.
- Song IS, Jun SY, Na HJ, Kim HT, Jung SY, Ha GH, et al. Inhibition of MKK7-JNK by the TOR signaling pathway regulator-like protein contributes to resistance of HCC cells to TRAIL-induced apoptosis. *Gastroenter*ology. 2012;143:1341–1351.
- Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. *Mol Cell Proteomics*. 2010;9:2048–2062.
- Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, Deciu C, et al. Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. *Proc Natl Acad Sci U S* A. 2003;100:3107–3112.
- Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. *Cardiovasc Res.* 2012;93:563–572.
- Ridinger H, Rutenberg C, Lutz D, Buness A, Petersen I, Amann K, et al. Expression and tissue localization of beta-catenin, alpha-actinin and chondroitin sulfate proteoglycan 6 is modulated during rat and human left ventricular hypertrophy. *Exp Mol Pathol*. 2009;86:23–31.
- Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. *Antioxid Redox Signal*. 2013;18: 1078–1099.
- Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. *Physiol Rev.* 2007;87:521–544.
- 43. Galindo CL, Skinner MA, Errami M, Olson LD, Watson DA, Li J, et al. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure. *BMC Physiol*. 2009;9:23.

CLINICAL PERSPECTIVE

A fundamental question in heart failure research is to understand why disease stresses, such as hypertension, lead to pathological cardiac hypertrophy and an accompanying risk of heart failure whereas physiological stresses, such as exercise or pregnancy, lead to physiological cardiac remodeling without major risk of heart failure. Previous studies have investigated the roles of specific molecular signaling pathways or have analyzed differences in gene expression in experimental models to try and identify similarities and differences between physiological and pathological hypertrophy. In the current work, a global network biology approach was developed using genomic and proteomic data from multiple experimental mouse models to study the molecular patterns that distinguish pathological and physiological hypertrophy. A network-based combined analysis of 127 publicly available genome-wide expression arrays using graph theory methods was able to define phenotype-specific pathological and physiological gene coexpression networks. A key difference in network structure between the physiological and pathological networks was rewiring of a subset of genes, that is, their differential coexpression in the 2 networks. This rewired network included several distinct cellular pathways and gene sets. Furthermore, targeted proteomic analysis revealed significant mRNA–protein correlation at the cellular pathway level (eg, for extracellular matrix components). This combined gene network and proteomic analysis of left ventricular hypertrophy provides a platform for the identification and investigation of potentially novel pathways that distinguish physiological and pathological hypertrophy. In addition, a detailed freely accessible protocol is provided that allows similar analyses in other cardiovascular diseases.

SUPPLEMENTAL MATERIAL

Materials and Methods

Microarray acquisition, pre-processing, and quality control

Six mouse microarray datasets (n = 127 arrays) were obtained from the ArrayExpress database¹ (**Table 1**). The datasets that were chosen for study represented different surgical/exercise and genetic models of pathological or physiological hypertrophy based on the respective phenotypes. The pathological cohort comprised a cardiomyocyte-specific AT1 (angiotensin receptor type 1) transgenic heart dataset and two surgical AC (aortic constriction) datasets. The AT1 dataset consisted of wild type mice (n = 5), and the AT1 transgenics undergoing cardiac failure and hypertrophy (n = 11). The AC1 dataset included time course data for untreated (n = 3), sham (n = 6), and AC (n = 10) operated male mice. The AC2 dataset consisted of time course data monitoring mice undergoing aortic constriction (n = 18) and sham- (n = 18) operated controls. The physiological cohorts included Akt, PI3K, and Swimming datasets. The Akt dataset consisted of normal heart tissue (n = 4), short-term (2 weeks) activated cardiac-specific Akt1 overexpression (n = 4), and switched-off Akt1 (2 days following 2 week activation, n = 4). The PI3K dataset consisted of wild type hearts (n =3) and cardiac-specific overexpression of dominant-negative PI3K (n = 3) or a constitutively active form of PI3K (n = 3). Finally, the Swimming dataset, containing 30 arrays, monitored expression in mouse hearts under normal conditions, swimming (short- and long-term), and swimming followed by 1 week of rest. Mice were swum for 10 min - 90 min twice a day. Mice were sacrificed at 10 min, 2.5 days, one week, two weeks, three weeks, or 4 weeks of exercise training, and after 4 weeks of swimming and one week of rest. Age-matched mice that did not exercise were used as controls. Heart weight/body weight ratios were increased with exercise by 29-49% (p<0.05). Detailed morphological and experimental data on this model can be obtained from

http://cardiogenomics.med.harvard.edu/groups/proj1/pages/swim_home.html.Where applicable, raw expression values were normalized using Robust Multi-array Average $(RMA)^2$ pipeline available through the affy³ package for R statistical environment. If raw array data was not readily available, processed gene expression profiles were log2-transformed. To standardize multiple microarray platforms, Affymetrix probe names were mapped to Entrez gene identifiers $(IDs)^4$ and in cases where multiple probesets mapped to a single gene, the probeset with largest inter-array variance in signal intensity was retained.

We then calculated the correlation of gene expression between samples, and outliers with mean sample correlations more than three standard deviations below average were omitted until no outliers remained⁵. After outlier detection, quantile normalization was performed on the filtered data.

Reverse engineering gene networks and generation of random networks

Gene co-expression networks

Pairwise similarity in gene expression vectors was expressed by the Pearson correlation coefficient (PCC). Gene pairs that correlated above a predefined PCC threshold were represented in the form of an undirected unweighted network, where nodes correspond to genes and links (edges) correspond to co-expression between genes. We used the partial correlation and information theory (PCIT) algorithm to eliminate non-significant co-expressions for each microarray dataset⁶. This algorithm uses first-order partial correlation coefficients combined with an information theory approach to identify meaningful gene–gene associations. Briefly, the strength of the linear correlation is assessed between two genes

given its independence from a third gene. It has previously been applied to reverse-engineered gene co-expression networks in human B cells⁷ and elucidation of metabolic pathways in Saccharomyces cerevisiae⁸.

Random network generation

To compare real gene co-expression networks to randomly generated networks, we computed 200 random networks using the Maslov-Sneppen approach⁹. Randomization was performed by rewiring edges in the original networks while preserving degrees of the respective nodes. The number of rewiring steps taken for each model was 4 x (number of edges).

Graph theory methods

Node degree

The most elementary characteristic of a node is its degree, k, which indicates how many links the node has to other nodes. Degree is associated with the importance of a node, or its centrality with respect to other nodes in the network. Node degree of the i^{th} gene is defined by

$$k = \sum_{j \neq i} A(i, j)$$

where \mathbf{A} is the symmetric adjacency matrix of a gene network. In biological networks, such as the yeast protein interaction network, nodes with high degree, also known as hubs, appear to be essential for cell survival¹⁰.

Betweenness centrality

Betweenness centrality (C^{Btw}) can help to identify nodes with high information flow. Betwenness centrality of a node *i* in an unweighted and undirected network is given by:

$$C^{Btw(i)} = \sum_{j < k} \frac{g_{jk}(i)}{g_{jk}}$$

where $g_{jk}(i)$ is the number of shortest paths between nodes *j* and *k* that pass through node *i* and g_{jk} is the total number of shortest paths connecting nodes *j* and *k*. Therefore, nodes with the highest betweenness control most of the information flow in the network, representing the critical points of the network. In yeast regulatory networks, these nodes appear to have a higher tendency to be essential genes¹¹.

Eigenvector centrality

Eigenvector centrality (C^{Eig}) favors nodes that are connected to nodes that are themselves central within the network, thus taking into account overall network connectivity¹². The C^{Eig} of a node *i* in an unweighted and undirected network is given by:

$$C^{Eig(i)} = \frac{1}{\lambda} \sum_{j \in M(i)} x_j = \frac{1}{\lambda} \sum_{j=1}^{N} A_{i,j} x_j$$

where **A** is the adjacency matrix, *N* is number of nodes, M(i) is a set of neighbor nodes of *i*, and λ is the largest eigenvalue. For example, in protein-protein interaction networks, C^{Eig} is a measure for how well connected a protein is to other highly connected proteins in a network.

Clustering coefficient

Clustering coefficient, C^{Clu} , intends to answer the question: in what percentage of cases, a node's neighbors are also neighbors. For node *i*, $C^{Clu(i)}$ is defined as:

$$C^{Ch(i)} = \frac{2n}{k_i(k_i - 1)}$$

where *n* denotes the number of direct links connecting the k_i nearest neighbors of node *i*. C^{Clu} ranges from zero (for a node that is part of a loosely connected group) to one (for a node at the center of a fully connected cluster). Thus, C^{Clu} measures the local clustering in the graph. In protein-protein interaction networks, genes that harbor a disease-causing mutation tend to avoid dense-clustering neighborhoods, unlike the genes that are essential for cell survival¹³.

Density

The density of a graph is defined as the ratio of the number of edges to the number of possible edges. Density values range between 0 and 1. In the former case, a graph is disconnected, while in the latter case, every vertex of the graph is fully interconnected.

Shortest path

The shortest path for an undirected and unweighted graph is defined as the shortest sequence of steps (i.e. distance) to be travelled between any two genes in a network. A graph theoretic analysis of metabolic reactions in Escherichia coli has revealed a larger than expected shortest path length (~8 reactions), suggesting that the metabolic world of this organism is not small in terms of biosynthesis and degradation¹⁴.

Diameter

Diameter is defined as the longest shortest path between any two nodes in a network. In an unweighted and undirected graph, it is the highest number of hops to be traveled between any two nodes. Interestingly, most real networks have surprisingly small diameters, and thus they can be classified as "small-world". The idea comes from Stanley Milgram's experiment in 1969¹⁵, who found that the average distance that letters have to travel in a social network (which was not visible a priori) was 6, hence the phrase "six degrees of separation".

K-core decomposition

The *k*-core of a graph is defined as the maximum subgraph if every node has at least *k* links. *K*-core is determined by iteratively pruning all nodes with a degree lower than *k* and their incident links. The cores of a graph form layers: the (k+1)-core is always a subgraph of the *k*-core. Consequently, a subgraph with higher coreness will contain nodes with higher degrees. Application of a core decomposition method recently allowed identification of the inherent layer structure of the yeast protein interaction network, whereby probability of proteins both being essential and evolutionary conserved successively increased toward the innermost cores¹⁶.

Gene community detection

In Pathological and Physiological networks gene communities were identified by optimization of modularity^{17, 18}. The method is a greedy optimization procedure that attempts to optimize the modularity of a partition of the network. Modularity, Q, is defined as the fraction of all edges that lie within communities minus the expected value of the same quantity in a graph in which the vertices have the same degrees but edges are placed randomly¹⁸. It is given by:

$$Q = \sum_{s=1}^{NC} \frac{E_s}{E} - \left(\frac{k_s}{2E}\right)^2$$

Where, *NC* is the number of clusters, *E* is the number of edges in the network, E_s is the number of edges between vertices within cluster *s*, and k_s is the sum of the degrees of the vertices in cluster *s*. The value of the modularity measure *Q* ranges from 0 to 1, and the optimal clustering is achieved by maximizing *Q*.

Graph-theoretic analyses were carried out using the Functional Genomic Assistant toolbox¹⁹ for MATLAB (2009a, The MathWorks, Nattick MA) and the *igraph*²⁰ library for R statistical environment.

Phenotype and gene set enrichment analyses

To determine phenotype-specificity of the Pathological and Physiological networks, we used the MamPhEA web tool²¹ for mammalian phenotype enrichment analysis. Phenotype information was acquired from the MGI database²². Individual gene sets were enriched for Gene Ontlogy (GO) Biological Process (BP) and Cellular Component (CC) terms. Additionally, pathway level enrichment was performed using the Reactome pathway database²³. Enrichment analysis was performed using the model-based gene set enrichment analysis (MGSA)²⁴. MGSA employs probabilistic inference via a Metropolis-Hasting algorithm to estimate the probability of categories to be active. The MGSA approach naturally takes category overlap into account and avoids the need for multiple testing corrections met in single-category enrichment analysis. All relevant gene sets were acquired from the Molecular Signatures Database (MSigDB, v3.0)²⁵.

Animal models

Procedures were performed in accordance with the Guidance on the Operation of the Animals (Scientific Procedures) Act, 1986 (United Kingdom). Pathological cardiac hypertrophy was induced by the minimally invasive aortic constriction (AC), as previously described²⁶. C57BL/6 mice 8-10 weeks of age were used. Sham constriction involved identical surgery apart from band placement. Physiological cardiac hypertrophy was achieved by a voluntary wheel running program²⁷. Briefly, 8-10 weeks old C57BL/6 mice were initially introduced together into the running cage to learn from each other to run on the wheel. After a 7 day training period, mice were randomly housed individually and left to run up to 4 weeks. The running wheel is connected by a light triggered counting system, running time and distance is monitored and recorded with LabChart7. The average running distance was over 4km/day. Age-matched mice were also randomly assigned to the sedentary control group. They were housed in identical cages except for a non-rotating wheel for the same amount of time. 2 weeks TAC and 4 weeks exercise running resulted in 65% and 14% increase compared to controls in terms of heart weight/tibia length ratio respectively (**Supplementary Figure S4**).

qPCR assay

RNA was extracted from mouse tissue using the RNeasy Mini Kit (Qiagen) according to the manufacturer's protocol. 1 μ g of total RNA was reverse transcribed into cDNA with the High Capacity RNA to cDNA kit (Life tech). The reverse transcription (RT) was performed according to the company's recommendations (10 μ l of 2x Reverse-Transcription Buffer combined with 1 μ l of 20x Reverse Transcription Enzyme mix) to a final volume of 20 μ l. The RT reaction was set as follows: 37°C for 60 min and 95°C for 5 min using a Veriti thermocycler (Applied Biosystems). Taqman gene expression assays were used to assess the expression of individual genes: Col1a1, Col4a1, Col5a2, Paip2b, Phtf2, Prps1, Rnf14, Serpinh1, Sparc, Tiprl (Life Tech). For each gene, 10 ng of cDNA were combined with 0.5 μ l

of Taqman gene expression Assay (20x) (Applied Biosystems) and 5 μ l of the Taqman Universal PCR Master Mix No AmpErase UNG (2x) to a final volume of 10 μ l. Quantitative PCR was performed on an Applied Biosystems 7900HT thermocycler at 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. All samples were standardized to Gapdh using SDS2.2 (Applied Biosystems) software.

Animal models for proteomic experiments

The *in vivo* models of pathological hypertrophy that were studied have been described previously²⁸. Wild-type mice (n = 4) underwent implantation of osmotic minipumps, and received angiotensin II (1.1mg/kg/day) for 14 days. Pressure overload was induced by aortic constriction in wild-type mice (n = 4) anesthetized with an isoflurane/O₂ mixture (2/98%). Sham surgery (n = 4) comprised an identical procedure with the exception of constriction. Tissues were obtained at 2 weeks post-surgery.

Tissue preparation

For the proteomics studies, we used LVs from 4 wild-type sham-operated mice, 3 angiotensin II-induced hypertrophy and 3 LVs following aortic constriction. Protein extraction was performed as described previously²⁹. In brief, to remove plasma contaminants LVs were diced into small pieces and incubated with 0.5M NaCl, 10mM Tris pH 7.5, plus proteinase/phosphatase inhibitor cocktails (Sigma-Aldrich) and 25mM EDTA. To partially decellularize the hearts and skin the cardiomyocytes, samples were incubated with 0.1% SDS (10:1 buffer volume to tissue weight), including proteinase/phosphatase inhibitor cocktails and 25mM EDTA. Finally, to solubilize heavily crosslinked extracellular matrix (ECM) and myofilament proteins, samples were incubated in a 4M guanidine-HCl, 50mM sodium acetate pH 5.8 buffer (5:1 buffer volume to tissue weight), plus proteinase/phosphatase inhibitor cocktails and 25mM EDTA. Subsequently, deglycosylation (removal of glycosaminoglycan side chains) was achieved by enzymes (0.05U, chondroitinase ABC [*Proteus vulgaris*], keratanase [*Bacteroides fragillis*], heparatinase II [*Flavobacterium heparinum*], Sygma Aldrich) in a 150mM NaCl, 50mM sodium acetate pH 6.8 buffer supplemented with proteinase/phosphatase inhibitors and 10mM EDTA for 16h at 37°C.

1D Electrophoresis

Aliquots of the guanidine extracts were denatured and reduced in sample buffer containing 100mM Tris, pH 6.8, 40% glycerol, 0.2% SDS, 2% beta-mercaptoethanol and 0.02% bromophenol blue and boiled at 96°C for 10min. 35µg of protein per sample were loaded and separated on Bis-Tris discontinuous 4-12% polyacrylamide gradient gels (NuPage, Invitrogen). Pre-stained protein standards were run alongside the samples to allow molecular mass estimation of proteins (All Blue, Precision Plus, Bio-Rad Laboratories).

Nanoflow liquid chromatography tandem mass spectrometry (LC-MS/MS)

After electrophoresis, Coomassie staining was used for band excision to avoid crosscontamination of fainter gel bands. To ensure equal loading in each LC-MS/MS experiment, the entire gel lane was excised and subjected to in-gel digestion with trypsin using an Investigator ProGest (Genomic Solutions) robotic digestion system. Tryptic peptides were separated on a nanoflow LC system and eluted with an 80 min gradient (10-25% B in 35 min, 25-40% B in 5 min, 90% B in 10 min and 2% B in 30min where A=2% ACN, 0.1% formic acid in HPLC H₂O and B = 90% ACN, 0.1% formic acid in HPLC H₂O). The column was coupled to a nanospray source (Picoview). After the direct LC-MS run, the flow was switched and the portion stored in the capillary of the RePlay (Advion) device reanalyzed ('replay run'). This injection system splits the gradient from the analytical column and allows the reanalysis of the same sample in a single LC-MS/MS run³⁰. Spectra were collected from an iontrap mass analyzer (LTQ Orbitrap XL, ThermoFisher Scientific) using full ion scan mode over the mass-to-charge (m/z) range 450-1600. MS/MS was performed on the top six ions in each MS scan using the data-dependent acquisition mode with dynamic exclusion enabled. MS/MS peaklists were generated by extract_msn.exe and matched to mouse database (UniProtKB/Swiss-Prot) using SEQUEST v.28 (rev. 13), (Bioworks Browser 3.3.1 SP1, ThermoFisher Scientific) and X! Tandem, (Version 2007.01.01.2). Carboxyamidomethylation of cysteine was chosen as fixed modification and oxidation of methionine as variable modification. The mass tolerance was set at 1.5 AMU for the precursor ions and at 1.0 AMU for fragment ions. Two missed cleavages were allowed.

Label-free quantification

Spectral counts

Scaffold (version 2.0.6, Proteome Software Inc., Portland, OR) was used to calculate the spectral counts and to validate MS/MS based peptide and protein identifications^{31, 32}. According to the default values in the Scaffold software, the following peptide thresholds were applied: X! Tandem: -Log(Expect Scores) > 2.0, SEQUEST: deltaCn > 0.10 and XCorr > 2.5 (+2), 3.5 (+3) and 3.5 (+4). Peptide identifications were accepted if they could be established at greater than 95.0% probability as specified by the Peptide Prophet algorithm ³¹. Protein identifications were accepted if they could be established at greater than 99.0% probability with at least 2 independent peptides. RePlay samples were combined using the Scaffold software. Spectral counts were log₂-transformed in order to increase the signal of low-abundant proteins.

Ion intensity

Progenesis LC-MS software (Version 3.1; Nonlinear Dynamics Ltd., Newcastle, UK) was used to perform protein relative quantification based on peptide ion abundance. To analyse the data from fractionated samples, a series of experiments was created with the software. An "experiment" was created by combining the LC-MS/MS runs of analogous fractions from each biological sample. The raw data containing LC-MS analyses acquired in profile mode with a high resolution mass spectrometer were uploaded, and for each experiment, the most representative LC-MS run was selected as reference run. The LC-MS patterns were then aligned with the reference run setting alignment vectors automatically to compensate for between-run variation in the LC separation technique. After inspection of the alignment results, additional vectors were manually inserted where needed. Peptide peaks were automatically detected and filtered based on charge state (only +2, +3 and +4 charges were selected). Subsequently, +4 charged peptides with 2 or less isotopes were removed from the analysis. The peptide ion abundance was then calculated as the sum of the peak areas within the isotopes boundaries. To correct experimental/technical variations, the peptide ion abundance was automatically normalized by calculation of a robust distribution of all peptide abundance ratios and determination of a global scaling factor. Peptide and protein identification was obtained from the Scaffold spectrum report containing the MS/MS search results. The protein abundance was then calculated as the sum of the abundances of all unique peptides belonging to the protein. Proteins were collated by combination of the single-fraction experiments in one overall multi-fraction experiment. Relative protein quantification between groups (e.g. treated vs. control) was considered for proteins having two or more unique quantified peptides. RePlay samples were treated as technical replicates and raw protein intensity values were log₂-transformed prior to further statistical analysis.

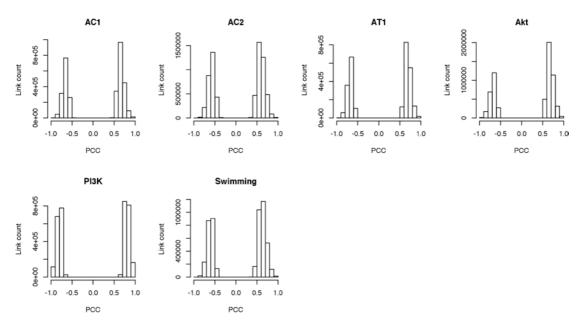
A comparison of protein spectral counting (SpC) and ion intensity (IoI) quantification is shown in **Supplementary Figure S6**, and indicates a significant correlation between the two approaches.

Proteomic data availability

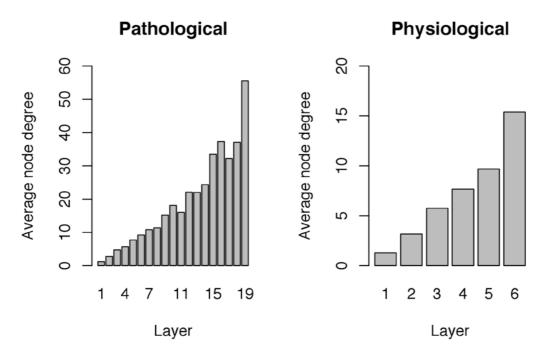
Spectral counting and ion intensity reports are available in **Datasets 1 and 2** respectively.

Western blotting

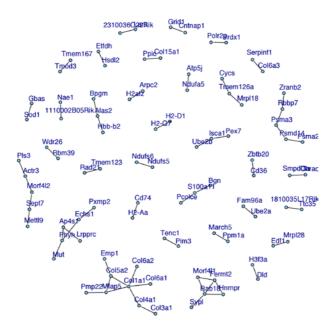
Aliquots of the SDS and 4M guanidine extracts were mixed with denaturing sample buffer and boiled. $30\mu g$ of protein per sample were loaded and separated on 4-12% gradient gels as above. Proteins were then transferred on nitrocellulose membranes. Membranes were blocked in 5% fat-free milk powder in PBS and probed for 16h at 4°C with primary antibodies to: TNNI3 (Abcam, ab10231), COL6A2 (Santa Cruz, sc-9855), GPX3 (RND Systems, AF4199), ITA8 (Santa Cruz, sc-25713) and β -Actin (Sigma-Aldrich, A5691). All antibodies were used at 1:500 dilution in 5% BSA. The membranes were treated with the appropriate secondary, horseradish peroxidase (HRP) conjugated antibodies (Dako) at a 1:2000 dilution. Finally, the blots were imaged using enhanced chemilluminenscence (ECL, GE Healthcare) and films were developed on a Xograph processor.

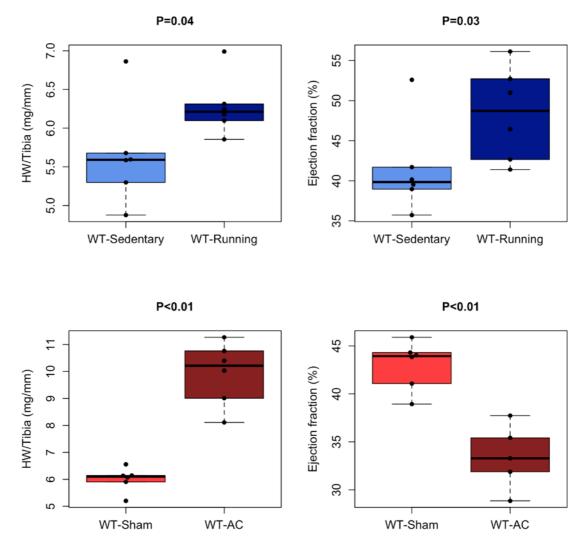

Statistical analysis

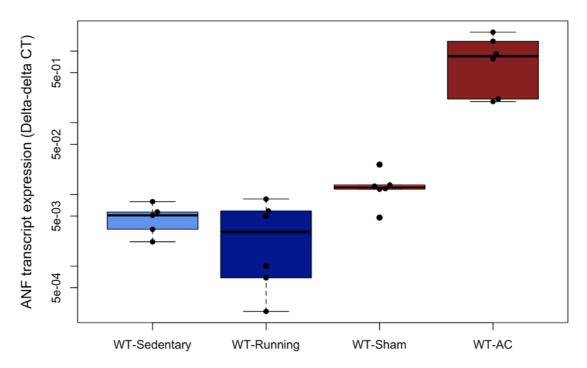
Differential expression analysis was performed by fitting a linear model with Empirical Bayes shrinkage to the log-intensities of expression values for each gene³³. P-values were adjusted to control the expected false discovery rate using Benjamini-Hochberg correction. Adjusted p-values<0.05 were considered significant.

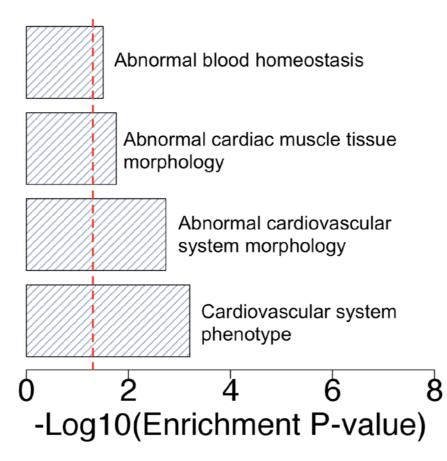

Analysis of protein functional categories

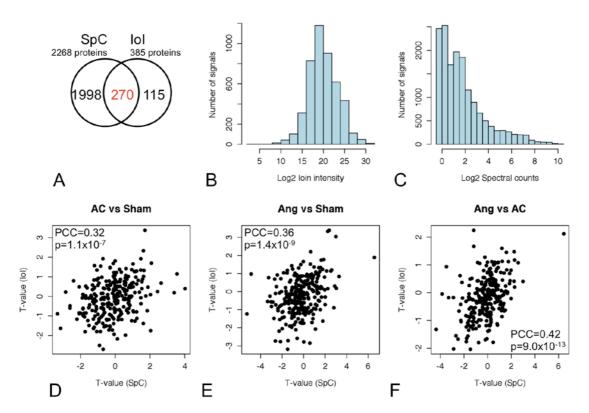
Functional enrichment analysis of proteins for Gene Ontology (GO) Cellular Process was performed using Enrichment Map tool³⁴.


Supplementary Figures


Supplementary Figure S1. Histograms visualizing distribution of positive and negative Pearson Correlation Coefficients (PCCs) for all mouse microarray datasets. The PCIT algorithm⁶ was used to identify meaningful gene-gene co-expressions. All PCC values appear to be centered around ± 0.75 , suggesting a reasonable distribution of all coefficients.


Supplementary Figure S2. Histograms demonstrating average node degrees of network layers in Pathological and Physiological networks.


Supplementary Figure S3. Conserved nodes (n=90) and co-expressions (n=60) in both Pathological and Physiological networks. Each node and edge represents a gene and a co-expression that was observed in both LVH networks. Most of the shared co-expressions were between genes encoding extracellular matrix (ECM) proteins, for instance collagens (Col1a1, Col4a1, Col5a2, Col6a2) and serpin peptidase inhibitor clade F member 1 (Serpinf1).


Supplementary Figure S4A. Morphological data for AC and exercised-trained mice and corresponding WT controls. Student t-test p-values < 0.05 were considered statistically significant. LV = left ventricle, HW = heart weight.

Supplementary Figure S4B. Atrial natriuretic peptide (ANF) transcript expression profiles in AC and exercised-trained mice and corresponding WT controls.

Supplementary Figure S5. MamPhEA-driven enrichment of genes common to the Pathological and Physiological networks for phenotypes associated with mutations in these genes. Dotted red line corresponds to adjusted p-value = 0.05.

Supplementary Figure S6. Comparison of protein spectral counting (SpC) with ion intensity (IoI) quantification. A) Venn diagram showing 270 proteins identified by both quantification methods. B) Frequency histogram showing distribution of spectral counts across 2268 proteins. C) Frequency histogram showing distribution of spectral counts across 385 proteins. D-F) Pair-wise scatter plots between aortic constriction- (AC), angiotensin-(Ang), and sham-operated mice showing protein expression changes computed using either spectral counting or ion intensity quantification. Overall, there exists a significantly positive Pearson's correlation (PCC) between the two quantification approaches.

Supplementary Data

The following source data are available at: https://sites.google.com/site/cardionetworks/

Supplementary Table 1. Pathological LVH Network (3634 nodes, 13558 edges). Provided as Drozdov_TableS1.xls

Supplementary Table 2. Physiological LVH Network (3156 nodes, 4486 edges). Provided as Drozdov_TableS2.xls

Supplementary Table 3. Annotation and topology of 3634 genes in the Pathological network sorted by node degree. Provided as Drozdov_TableS3.xls

Supplementary Table 4. Annotation and topology of 3156 genes in the Physiological network sorted by node degree. Provided as Drozdov_TableS4.xls

Supplementary Table 7. Annotation and topology of 1553 genes in the Rewired network sorted by the degree of rewiring. Provided as Drozdov_TableS7.xls

Supplementary Table 9. Pathological hypertrophy mitochondrial, myofilament, and extracellular subproteomes. Provided as Drozdov_TableS9.xls

Supplementary Table 10. Differential expression information for assigned protein spectra and corresponding gene expression in pathological hypertrophy datasets. Provided as Drozdov_TableS10.xls

Supplementary Table 11. Average mRNA and protein fold changes for respective Reactome pathways. Table is sorted by decreasing mRNA level fold change. Provided as Drozdov_TableS11.xls

Supplementary Dataset 1. Protein spectra counts in cardiac hypertrophy. Provided as Drozdov_Dataset1.xls

Supplementary Dataset 2. Protein ion intensities in cardiac hypertrophy. Provided as Drozdov_Dataset2.xls

Supplementary Tables

Supplementary Table 5. Functional enrichment of genes specific to the Pathological and Physiological networks for over-represented Gene Ontology (GO) Biological Process (BP), and Cellular Component (CC) terms, as well as Reactome pathways. inPopulation=total number of genes per term; inStudySet=number of genes in a network that mapped to a term; estimate=posterior probability estimate of functional enrichment; std.error=standard error of posterior probability estimate.

Pathological LVH				
Reactome pathway	inPopulation	inStudySet	estimate	std.error
METABOLISM::REACTOME::REACT_112621. 4	1476	248	0.776	0.029
SIGNALING BY NGF::REACTOME::REACT_86675.5	227	46	0.617	0.009
CELL SURFACE INTERACTIONS AT THE VASCULAR WALL::REACTOME::REACT_86886.5	86	18	0.314	0.010
MHC CLASS II ANTIGEN PRESENTATION::REACTOME::REACT_12719 4.1	80	19	0.288	0.015
MEMBRANE TRAFFICKING::REACTOME::REACT_88307.5	119	24	0.287	0.016
MUSCLE CONTRACTION::REACTOME::REACT_108582 .5	53	13	0.197	0.015
ACTIVATION OF GENES BY ATF4::REACTOME::REACT_131139.1	10	5	0.186	0.011
FATTY ACID, TRIACYLGLYCEROL, AND KETONE BODY METABOLISM::REACTOME::REACT_101329. 5	187	39	0.176	0.023
INTEGRIN CELL SURFACE INTERACTIONS::REACTOME::REACT_100071 .5	82	18	0.172	0.008
COLLAGEN BIOSYNTHESIS AND MODIFYING ENZYMES::REACTOME::REACT_138096.1	56	13	0.165	0.011
COLLAGEN FORMATION::REACTOME::REACT_131580.1	56	13	0.162	0.012
RESPONSE TO ELEVATED PLATELET CYTOSOLIC CA2+::REACTOME::REACT_32515.6	93	20	0.154	0.012
CHAPERONIN-MEDIATED PROTEIN FOLDING::REACTOME::REACT_106427.5	44	10	0.152	0.011
ELONGATION ARREST AND RECOVERY::REACTOME::REACT_82766.5	38	9	0.146	0.012
INTERLEUKIN-2 SIGNALING::REACTOME::REACT_29186.6	42	8	0.139	0.012
PERK REGULATED GENE EXPRESSION::REACTOME::REACT_108469.5	13	5	0.134	0.007
PLATELET DEGRANULATION::REACTOME::REACT_102 232.5	88	19	0.128	0.006
BASIGIN INTERACTIONS::REACTOME::REACT_91519. 5	27	8	0.120	0.003
THE CITRIC ACID (TCA) CYCLE AND RESPIRATORY ELECTRON TRANSPORT::REACTOME::REACT_114046.4	148	32	0.117	0.010
GOBP	inPopulation	inStudySet	estimate	std.error
SMALL MOLECULE METABOLIC PROCESS::GO::GO:0044281	1065	190	0.668	0.124

	1		1	1
ORGAN DEVELOPMENT::GO::GO:0048513	1976	344	0.647	0.063
TISSUE DEVELOPMENT::GO::GO:0009888	998	185	0.353	0.065
ESTABLISHMENT OF PROTEIN	410	75	0.200	0.030
LOCALIZATION::GO::GO:0045184 REGULATION OF APOPTOTIC	110	,,,	0.200	0.050
PROCESS::GO::GO:0042981	1055	198	0.186	0.040
CELLULAR KETONE METABOLIC	509	07	0.150	0.072
PROCESS::GO::GO:0042180	509	97	0.156	0.072
NEGATIVE REGULATION OF PROGRAMMED CELL	588	110	0.110	0.029
DEATH::GO::GO:0043069	288	118	0.119	0.028
AMINE METABOLIC	164	36	0.115	0.090
PROCESS::GO::GO:0009308	104	30	0.115	0.090
NEGATIVE REGULATION OF APOPTOTIC PROCESS::GO::GO:0043066	583	118	0.113	0.026
PROTEIN LOCALIZATION::GO::GO:0008104	683	112	0.112	0.062
REGULATION OF PROGRAMMED CELL	085	112	0.112	0.002
DEATH::GO::GO:0043067	1065	198	0.104	0.034
BIOLOGICAL ADHESION::GO::GO:0022610	351	65	0.104	0.045
GOCC	inPopulation	inStudySet	estimate	std.error
MITOCHONDRIAL PART::GO::GO:0044429	466	110	0.941	0.003
EXTRACELLULAR REGION				
PART::GO::GO:0044421	799	144	0.887	0.008
SOLUBLE FRACTION::GO::GO:0005625	321	60	0.631	0.023
CAVEOLA::GO::GO:0005901	64	19	0.605	0.019
VESICULAR FRACTION::GO::GO:0042598	209	39	0.381	0.021
MICROSOME::GO::GO:0005792	204	37	0.373	0.011
LAMELLIPODIUM::GO::GO:0030027	97	20	0.340	0.009
SECRETORY GRANULE::GO::GO:0030141	222	45	0.228	0.008
MICROTUBULE ASSOCIATED COMPLEX::GO::GO:0005875	63	14	0.219	0.009
CONTRACTILE FIBER PART::GO::GO:0044449	129	25	0.201	0.004
CYTOSOLIC PART::GO::GO:0044445	154	28	0.160	0.012
NEURON PROJECTION	06	22	0.126	0.000
TERMINUS::GO::0044306	96	23	0.136	0.006
U12-TYPE SPLICEOSOMAL COMPLEX::GO::GO:0005689	24	7	0.115	0.003
LATE ENDOSOME	16	6	0.114	0.005
MEMBRANE::GO::GO:0031902	10	0	0.114	
MEMBRANE RAFT::GO::GO:0045121	217	43	0.109	0.007
NUCLEAR UBIQUITIN LIGASE	21	6	0.102	0.004
COMPLEX::GO::GO:0000152 Physiological LVH				
	· D 1 (*			(1
	inPopulation	inStudySet	estimate	std.error
DEADENYLATION-DEPENDENT MRNA DECAY::REACTOME::REACT_94503.5	53	15	0.895	0.009
G ALPHA (I) SIGNALLING	185	30	0.529	0.020
EVENTS::REACTOME::REACT_90291.5	185	50	0.538	0.020
NUCLEAR RECEPTOR TRANSCRIPTION PATHWAY::REACTOME::REACT_99688.5	49	11	0.535	0.015
GLUCOSE				
METABOLISM::REACTOME::REACT_80637.	69	13	0.445	0.019
5	0)			
5 DOWNSTREAM SIGNAL				
DOWNSTREAM SIGNAL TRANSDUCTION::REACTOME::REACT_100	92	20	0.305	0.013
DOWNSTREAM SIGNAL		20	0.305	0.013

7 41 57 115 24 nPopulation 141 136 36 285 238	3 8 11 22 5 inStudySet 28 29 21 46 39	0.119 0.112 0.104 0.102 0.101 estimate 0.697 0.672 0.575 0.532 0.403	0.008 0.006 0.011 0.004 std.error 0.050 0.054 0.035 0.020 0.048 0.013
41 57 115 24 nPopulation 141 136 36 285	8 11 22 5 inStudySet 28 29 21 46	0.112 0.104 0.102 0.101 estimate 0.697 0.672 0.575 0.532	0.008 0.006 0.011 0.004 std.error 0.050 0.054 0.035 0.020
41 57 115 24 nPopulation 141 136 36	8 11 22 5 inStudySet 28 29 21	0.112 0.104 0.102 0.101 estimate 0.697 0.672 0.575	0.008 0.006 0.011 0.004 std.error 0.050 0.054 0.035
41 57 115 24 nPopulation 141 136	8 11 22 5 inStudySet 28 29	0.112 0.104 0.102 0.101 estimate 0.697 0.672	0.008 0.006 0.011 0.004 std.error 0.050 0.054
41 57 115 24 nPopulation 141	8 11 22 5 inStudySet 28	0.112 0.104 0.102 0.101 estimate 0.697	0.008 0.006 0.011 0.004 std.error 0.050
41 57 115 24 nPopulation	8 11 22 5 inStudySet	0.112 0.104 0.102 0.101 estimate	0.008 0.006 0.011 0.004 std.error
41 57 115 24	8 11 22 5	0.112 0.104 0.102 0.101	0.008 0.006 0.011 0.004
41 57 115	8 11 22	0.112 0.104 0.102	0.008 0.006 0.011
41 57	8	0.112 0.104	0.008
41 57	8	0.112 0.104	0.008
41	8	0.112	0.008
	-		
7	5	0.119	
-		4 1 1 1 1 1	0.006
	2	0.110	0.007
1	5	0.121	0.007
	0	0.150	0.000
27	6	0.130	0.008
12	4	0.135	0.007
10	5	0.138	0.012
	5	0.120	0.012
70	14	0.140	0.006
- <u>-</u>	т Т	0.172	0.005
2	4	0.149	0.005
14	4	0.150	0.009
	-		
12	5	0.153	0.008
53	11	0.174	0.007
73	13	0.193	0.010
12	5	0.199	0.020
	-	0.100	0.020
18	6	0.205	0.006
73	13	0.205	0.007
17	9	0.228	0.014
38	9	0.236	0.016
~	~	5.207	0.000
10	5	0.269	0.008
	18 7 13 8 2 13 2 13 2 13 2 14 2 10 6	13 9 13 13 13 13 8 6 2 5 3 13 3 13 3 11 2 5 4 4 2 4 0 14 6 5	13 0.236 17 9 0.228 13 0.205 8 6 0.205 2 5 0.199 3 13 0.193 3 13 0.193 3 11 0.174 2 5 0.153 4 4 0.150 2 4 0.149 0 14 0.140 6 5 0.138

PROCESS::GO::GO:2000241				
CELLULAR RESPONSE TO CYTOKINE	210	37	0.182	0.057
STIMULUS::GO::0071345 ICOSANOID METABOLIC	-			
PROCESS::GO::GO:0006690	48	12	0.174	0.019
CELLULAR MACROMOLECULE CATABOLIC PROCESS::GO::GO:0044265	294	45	0.173	0.034
PURINE RIBONUCLEOSIDE TRIPHOSPHATE CATABOLIC PROCESS::GO::GO:0009207	203	33	0.171	0.025
REGULATION OF CALCIUM ION TRANSPORT INTO CYTOSOL::GO::GO:0010522	44	13	0.164	0.036
RESPONSE TO TOXIN::GO::GO:0009636	58	17	0.157	0.029
ER TO GOLGI VESICLE-MEDIATED TRANSPORT::GO::0006888	24	9	0.157	0.010
REGULATION OF RELEASE OF SEQUESTERED CALCIUM ION INTO CYTOSOL::GO::0051279	30	9	0.150	0.026
GLUCOSE METABOLIC PROCESS::GO::GO:0006006	76	18	0.134	0.020
EPITHELIAL CELL DIFFERENTIATION::GO::GO:0030855	211	32	0.131	0.033
RIBONUCLEOSIDE TRIPHOSPHATE CATABOLIC PROCESS::GO::GO:0009203	204	33	0.125	0.012
UNSATURATED FATTY ACID METABOLIC PROCESS::GO::GO:0033559	50	12	0.114	0.031
ANGIOGENESIS::GO::GO:0001525	164	29	0.106	0.012
POSITIVE REGULATION OF CELL CYCLE::GO::GO:0045787	111	20	0.103	0.013
RIBONUCLEOPROTEIN COMPLEX SUBUNIT ORGANIZATION::GO::GO:0071826	74	15	0.102	0.007
CELLULAR RESPONSE TO STRESS::GO::GO:0033554	669	102	0.100	0.041
GOCC	inPopulation	inStudySet	estimate	std.error
PML BODY::GO::GO:0016605	51	12	0.883	0.008
	51		0.000	
PORE COMPLEX::GO::GO:0046930	31	9	0.594	0.020
RIBONUCLEOPROTEIN	31		0.594	0.020
RIBONUCLEOPROTEIN GRANULE::GO::0035770	31 66	13	0.594 0.520	0.020 0.013
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770 SOLUBLE FRACTION::GO::GO:0005625	31 66 321	13 47	0.594 0.520 0.488	0.020 0.013 0.023
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770 SOLUBLE FRACTION::GO::GO:0005625 VESICULAR FRACTION::GO::GO:0042598	31 66 321 209	13 47 34	0.594 0.520 0.488 0.383	0.020 0.013 0.023 0.030
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770 SOLUBLE FRACTION::GO::GO:0005625 VESICULAR FRACTION::GO::GO:0042598 MICROTUBULE::GO::GO:0005874	31 66 321 209 130	13 47 34 21	0.594 0.520 0.488 0.383 0.343	0.020 0.013 0.023 0.030 0.010
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792	31 66 321 209	13 47 34	0.594 0.520 0.488 0.383	0.020 0.013 0.023 0.030
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2	31 66 321 209 130	13 47 34 21	0.594 0.520 0.488 0.383 0.343	0.020 0.013 0.023 0.030 0.010
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792	31 66 321 209 130 204	13 47 34 21 33	0.594 0.520 0.488 0.383 0.343 0.303	0.020 0.013 0.023 0.030 0.010 0.011
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2 SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726CYTOPLASMIC STRESS	31 66 321 209 130 204 78	13 47 34 21 33 13	0.594 0.520 0.488 0.383 0.343 0.303 0.275	0.020 0.013 0.023 0.030 0.010 0.011 0.006
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2 SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726	31 66 321 209 130 204 78 88	13 47 34 21 33 13	0.594 0.520 0.488 0.383 0.343 0.303 0.275 0.244	0.020 0.013 0.023 0.030 0.010 0.011 0.006 0.009
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2 SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726CYTOPLASMIC STRESS GRANULE::GO::GO:0010494	31 66 321 209 130 204 78 88 26	13 47 34 21 33 13 13 7	0.594 0.520 0.488 0.383 0.343 0.303 0.275 0.244 0.237	0.020 0.013 0.023 0.030 0.010 0.011 0.006 0.009 0.008
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2 SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726CYTOPLASMIC STRESS GRANULE::GO::GO:0010494SPINDLE MICROTUBULE::GO::GO:000267CELL FRACTION::GO::GO:000267CCAAT-BINDING FACTOR	31 66 321 209 130 204 78 88 26 37	13 47 34 21 33 13 13 7 8	0.594 0.520 0.488 0.383 0.343 0.303 0.275 0.244 0.237 0.207	0.020 0.013 0.023 0.030 0.010 0.011 0.006 0.009 0.008 0.011
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2 SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726CYTOPLASMIC STRESS GRANULE::GO::GO:0010494SPINDLE MICROTUBULE::GO::GO:000267CELL FRACTION::GO::GO:000267CCAAT-BINDING FACTOR COMPLEX::GO::GO:0016602NUCLEAR INCLUSION	31 66 321 209 130 204 78 88 26 37 825	13 47 34 21 33 13 13 7 8 115	0.594 0.520 0.488 0.383 0.343 0.303 0.275 0.244 0.237 0.207 0.198	0.020 0.013 0.023 0.030 0.010 0.011 0.006 0.009 0.008 0.011 0.033
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2 SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726CYTOPLASMIC STRESS GRANULE::GO::GO:0010494SPINDLE MICROTUBULE::GO::GO:000267CELL FRACTION::GO::GO:000267CCAAT-BINDING FACTOR COMPLEX::GO::GO:0016602	31 66 321 209 130 204 78 88 26 37 825 4	13 47 34 21 33 13 13 7 8 115 3	0.594 0.520 0.488 0.383 0.343 0.303 0.275 0.244 0.237 0.207 0.198 0.193	0.020 0.013 0.023 0.030 0.010 0.011 0.006 0.009 0.008 0.011 0.033 0.007
RIBONUCLEOPROTEIN GRANULE::GO::GO:0035770SOLUBLE FRACTION::GO::GO:0005625VESICULAR FRACTION::GO::GO:0042598MICROTUBULE::GO::GO:0005874MICROSOME::GO::GO:0005792CATALYTIC STEP 2SPLICEOSOME::GO::GO:0071013RUFFLE::GO::GO:0001726CYTOPLASMIC STRESSGRANULE::GO::GO:0010494SPINDLE MICROTUBULE::GO::GO:000267CELL FRACTION::GO::GO:000267CCAAT-BINDING FACTORCOMPLEX::GO::GO:0016602NUCLEAR INCLUSIONBODY::GO::GO:0042405	31 66 321 209 130 204 78 88 26 37 825 4 5	13 47 34 21 33 13 13 7 8 115 3 4	0.594 0.520 0.488 0.383 0.343 0.303 0.275 0.244 0.237 0.207 0.198 0.193 0.184	0.020 0.013 0.023 0.030 0.010 0.011 0.006 0.009 0.008 0.011 0.033 0.007 0.011

COMPLEX::GO::GO:0071141				
SPLICEOSOMAL COMPLEX::GO::GO:0005681	106	16	0.162	0.008
NUCLEAR PORE::GO::GO:0005643	27	7	0.159	0.010
T-TUBULE::GO::GO:0030315	36	9	0.156	0.004
ENDOPLASMIC RETICULUM LUMEN::GO::GO:0005788	36	7	0.145	0.006
ENDOCYTIC VESICLE::GO::GO:0030139	60	11	0.143	0.007
PERINUCLEAR REGION OF CYTOPLASM::GO::GO:0048471	371	53	0.138	0.016
TRANSCRIPTIONALLY ACTIVE CHROMATIN::GO::GO:0035327	8	3	0.124	0.007
CORNIFIED ENVELOPE::GO::GO:0001533	24	5	0.123	0.005
PROTEASOME COMPLEX::GO::GO:0000502	17	5	0.121	0.005
MITOCHONDRIAL CRISTA::GO::GO:0030061	9	3	0.118	0.006
CYTOPLASMIC MRNA PROCESSING BODY::GO::GO:0000932	32	7	0.117	0.004
MULTIVESICULAR BODY::GO::GO:0005771	25	6	0.105	0.002

Supplementary Table 6. Functional enrichment of all genes specific in the Pathological and Physiological networks for over-represented Gene Ontology (GO) Biological Process (BP), and Cellular Component (CC) terms, as well as Reactome pathways. inPopulation=total number of genes per term; inStudySet=number of genes in a network that mapped to a term; estimate=posterior probability estimate of functional enrichment; std.error=standard error of posterior probability estimate

Physiological LVH

Reactome	inPopulation	inStudySet	estimate	std.error
	-	-		
INTERFERON SIGNALING::REACTOME::REACT_127785.	70	29	0.914	0.007
1				
GLUCOSE	69	24	0.837	0.016
METABOLISM::REACTOME::REACT_8063				
	1.40	16	0.740	0.012
THE CITRIC ACID (TCA) CYCLE AND RESPIRATORY ELECTRON	148	46	0.760	0.012
TRANSPORT::REACTOME::REACT_114046				
.4				
CYTOSOLIC TRNA	27	12	0.626	0.025
AMINOACYLATION::REACTOME::REACT				
_59282.6	10	•		0.010
NUCLEAR RECEPTOR TRANSCRIPTION	49	20	0.593	0.013
PATHWAY::REACTOME::REACT_99688.5 ANTIGEN PROCESSING:	64	29	0.517	0.016
UBIQUITINATION & PROTEASOME	04	2)	0.517	0.010
DEGRADATION::REACTOME::REACT_131				
037.1				
SIGNALING BY	115	47	0.483	0.012
PDGF::REACTOME::REACT_80348.5				
NCAM1	34	17	0.466	0.006
INTERACTIONS::REACTOME::REACT_868 77.5				
BRANCHED-CHAIN AMINO ACID	17	9	0.392	0.017
CATABOLISM::REACTOME::REACT_3299	17	,	0.372	0.017
0.6				
MITOCHONDRIAL PROTEIN	47	15	0.363	0.016
IMPORT::REACTOME::REACT_144481.1				
MUSCLE	53	18	0.359	0.009
CONTRACTION::REACTOME::REACT_108				
582.5 DEADENYLATION-DEPENDENT MRNA	53	19	0.329	0.012
DECAY::REACTOME::REACT_94503.5	55	17	0.52)	0.012
MEMBRANE	119	35	0.317	0.019
TRAFFICKING::REACTOME::REACT_8830				
7.5				
DEADENYLATION OF	26	12	0.293	0.008
MRNA::REACTOME::REACT_56462.6	1.4.1	10	0.076	0.017
GENERIC TRANSCRIPTION PATHWAY::REACTOME::REACT_85098.5	141	42	0.276	0.017
CIRCADIAN	55	19	0.266	0.010
CLOCK::REACTOME::REACT_109335.5			0.200	01010
PLATELET AGGREGATION (PLUG	37	15	0.260	0.010
FORMATION)::REACTOME::REACT_90514				
.5	_	_		0.010
CATION-COUPLED CHLORIDE COTRANSPORTERS::REACTOME::REACT	7	5	0.248	0.010
81104.5				
APOPTOSIS::REACTOME::REACT 100962.	140	48	0.238	0.013
5	1-10	40	0.250	5.015
ATTACHMENT OF GPI ANCHOR TO	7	5	0.228	0.014
UPAR::REACTOME::REACT_85671.5				
INWARDLY RECTIFYING K+	36	13	0.223	0.008
CHANNELS::REACTOME::REACT_108208.				
5				

TRANSPORT OF MATURE MRNA DERIVED FROM AN INTRON- CONTAINING	53	20	0.211	0.012
TRANSCRIPT::REACTOME::REACT_94770. 5				
SIGNALING BY EGFR::REACTOME::REACT_82411.5	109	40	0.207	0.009
LATENT INFECTION OF HOMO SAPIENS WITH MYCOBACTERIUM TUBERCULOSIS::REACTOME::REACT_146	32	12	0.205	0.012
901.1 PERK REGULATED GENE EXPRESSION::REACTOME::REACT_10846 9.5	13	7	0.204	0.003
9.5 MHC CLASS II ANTIGEN PRESENTATION::REACTOME::REACT_127 194.1	80	27	0.196	0.012
PHAGOSOMAL MATURATION (EARLY ENDOSOMAL	32	12	0.187	0.007
STAGE)::REACTOME::REACT_126778.1 SIGNALING BY EGFR IN CANCER::REACTOME::REACT_118233.3	111	41	0.183	0.007
MITOTIC METAPHASE ANAPHASE TRANSITION::REACTOME::REACT_88639.	7	5	0.177	0.004
INSULIN RECEPTOR RECYCLING::REACTOME::REACT_81379. 5	25	10	0.166	0.011
ACTIVATION OF CHAPERONE GENES BY ATF6-	10	6	0.166	0.005
ALPHA::REACTOME::REACT_138784.1 ATP SENSITIVE POTASSIUM CHANNELS::REACTOME::REACT_147052.	4	4	0.161	0.009
1 ALPHA-LINOLENIC (OMEGA3) AND LINOLEIC (OMEGA6) ACID METABOLISM::REACTOME::REACT_1427	12	6	0.157	0.006
72.1 TRAFFICKING AND PROCESSING OF ENDOSOMAL	12	6	0.153	0.006
TLR::REACTOME::REACT_129583.1 DOWNSTREAM SIGNAL TRANSDUCTION::REACTOME::REACT_10	92	36	0.152	0.010
0635.5 ALPHA-LINOLENIC ACID (ALA) METABOLISM::REACTOME::REACT_1265	12	6	0.151	0.010
19.1 PI METABOLISM::REACTOME::REACT_1446	48	16	0.144	0.012
13.1 RECRUITMENT OF MITOTIC CENTROSOME PROTEINS AND COMPLEXES::REACTOME::REACT_92567.	73	24	0.143	0.006
5 STRIATED MUSCLE CONTRACTION::REACTOME::REACT_886	28	10	0.138	0.007
44.5 GOLGI TO ER RETROGRADE TRANSPORT::REACTOME::REACT_78992.	10	6	0.136	0.005
5 MITOTIC G2-G2 M PHASES::REACTOME::REACT_105104.5	88	28	0.136	0.005
ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT	28	10	0.135	0.018
(ESCRT)::REACTOME::REACT_141747.1 COPI MEDIATED TRANSPORT::REACTOME::REACT_80406.	10	6	0.135	0.006

5				
G2 M TRANSITION::REACTOME::REACT_34062.	85	27	0.130	0.009
6 CENTROSOME MATURATION::REACTOME::REACT_9609	73	24	0.130	0.007
6.5 INHIBITION OF REPLICATION INITIATION OF DAMAGED DNA BY RB1	6	5	0.128	0.005
E2F1::REACTOME::REACT_82590.5 INHIBITION OF INSULIN SECRETION BY ADRENALINE	34	13	0.127	0.006
NORADRENALINE::REACTOME::REACT_ 86915.5 CREATINE	7	4	0.120	0.003
METABOLISM::REACTOME::REACT_1067 12.5				
INTRINSIC PATHWAY FOR APOPTOSIS::REACTOME::REACT_98486.5	32	12	0.120	0.008
CLEAVAGE OF GROWING TRANSCRIPT IN THE TERMINATION	47	17	0.118	0.006
REGION::REACTOME::REACT_92795.5 E2F MEDIATED REGULATION OF DNA REPLICATION::REACTOME::REACT_1047	27	10	0.117	0.003
79.5 REGULATION OF GENE EXPRESSION BY HYPOXIA-INDUCIBLE	9	5	0.115	0.007
FACTOR::REACTOME::REACT_137830.1 NCAM SIGNALING FOR NEURITE OUT-	60	26	0.114	0.008
GROWTH::REACTOME::REACT_88653.5 POST-ELONGATION PROCESSING OF THE	47	17	0.114	0.005
TRANSCRIPT::REACTOME::REACT_10519 7.5				
PYRUVATE METABOLISM AND CITRIC ACID (TCA)	40	16	0.113	0.008
CYCLE::REACTOME::REACT_80935.5 SYNTHESIS OF PIPS AT THE PLASMA MEMBRANE::REACTOME::REACT_140792	31	11	0.109	0.007
RNA POLYMERASE II TRANSCRIPTION TERMINATION::REACTOME::REACT_3337	47	17	0.107	0.005
6.6 DCC MEDIATED ATTRACTIVE SIGNALING::REACTOME::REACT_93929.5	14	6	0.106	0.004
LOSS OF PROTEINS REQUIRED FOR INTERPHASE MICROTUBULE	63	21	0.105	0.002
ORGANIZATIONåÊFROM THE CENTROSOME::REACTOME::REACT_1066 86.5				
DOWNREGULATION OF SMAD2 3:SMAD4 TRANSCRIPTIONAL	26	9	0.104	0.006
ACTIVITY::REACTOME::REACT_141912.1				
GOBP	inPopulation	inStudySet	estimate	std.error
INTRACELLULAR	544	155	0.572	0.214
TRANSPORT% GO% GO:0046907 REGULATION OF BIOLOGICAL QUALITY% GO% GO:0065008	1766	415	0.373	0.198
METABOLIC PROCESS%GO%GO:0008152	4430	1033	0.371	0.228
NEGATIVE REGULATION OF PROTEIN	371	110	0.354	0.146
METABOLIC PROCESS% GO% GO:0051248 POSITIVE REGULATION OF METABOLIC	1800	455	0.348	0.175
PROCESS% GO% GO:0009893 CATABOLIC PROCESS% GO% GO:0009056	927	271	0.347	0.159

PROGRAMMED CELL	417	131	0.324	0.053
DEATH%GO%GO:0012501 TISSUE	445	124	0.324	0.107
MORPHOGENESIS%GO%GO:0048729 LOCALIZATION%GO%GO:0051179	2335	535	0.271	0.172
REGULATION OF RESPONSE TO STIMULUS%GO%GO:0048583	1796	426	0.245	0.144
BLOOD CIRCULATION%GO%GO:0008015	218	66	0.231	0.093
CELLULAR CATABOLIC PROCESS% GO% GO:0044248	808	239	0.208	0.117
COENZYME METABOLIC PROCESS% GO% GO:0006732	145	50	0.199	0.082
PROTEIN	92	34	0.199	0.073
HETEROOLIGOMERIZATION%GO%GO:00 51291				
RESPONSE TO METAL	151	54	0.187	0.076
ION%GO%GO:0010038 REGULATION OF MOLECULAR	1590	356	0.185	0.116
FUNCTION% GO% GO:0065009 POSITIVE REGULATION OF CELLULAR	2901	698	0.184	0.087
PROCESS% GO% GO:0048522 COFACTOR METABOLIC	176	56	0.176	0.073
PROCESS% GO% GO:0051186 APOPTOTIC PROCESS% GO% GO:0006915	402	126	0.176	0.052
REGULATION OF RNA	58	25	0.170	0.052
SPLICING%GO%GO:0043484				
REGULATION OF PRIMARY METABOLIC PROCESS% GO% GO:0080090	2980	689	0.169	0.118
CELL DEATH%GO%GO:0008219	465	141	0.169	0.038
INTRACELLULAR SIGNAL TRANSDUCTION%GO%GO:0035556	645	166	0.167	0.103
CELLULAR COMPONENT ORGANIZATION% GO% GO:0016043	2581	577	0.166	0.122
RIBONUCLEOPROTEIN COMPLEX	70	27	0.166	0.068
ASSEMBLY% GO% GO:0022618 CIRCULATORY SYSTEM	219	66	0.158	0.064
PROCESS% GO% GO:0003013 REGULATION OF CELLULAR	3024	699	0.140	0.106
METABOLIC PROCESS%GO%GO:0031323 EMBRYO DEVELOPMENT ENDING IN	558	151	0.130	0.053
BIRTH OR EGG HATCHING% GO% GO:0009792		101	01120	0.0000
RIBONUCLEOPROTEIN COMPLEX	74	28	0.118	0.054
SUBUNIT ORGANIZATION%GO%GO:0071826				
LOCOMOTION%GO%GO:0040011	659	152	0.118	0.097
POSITIVE REGULATION OF RESPONSE TO STIMULUS%GO%GO:0048584	918	234	0.109	0.068
CELL-CELL SIGNALING%GO%GO:0007267	458	100	0.109	0.047
EPITHELIUM DEVELOPMENT%GO%GO:0060429	492	136	0.107	0.042
GOCC	inPopulation	inStudySet	estimate	std.error
CELL-CELL JUNCTION%GO%GO:0005911	243	54	0.648	0.095
EXTRACELLULAR REGION PART%GO%GO:0044421	799	180	0.527	0.079
EXTRACELLULAR MATRIX%GO%GO:0031012	238	60	0.506	0.055
CELL PART%GO%GO:0044464	10091	2203	0.479	0.071
POSTSYNAPTIC MEMBRANE%GO%GO:0045211	69	19	0.414	0.046
CELL%G0%G0:0005623	10093	2203	0.330	0.055

EXTRACELLULAR SPACE%GO%GO:0005615	652	152	0.285	0.046
ORGANELLE MEMBRANE% GO% GO:0031090	956	249	0.246	0.079
CYTOSOL%GO%GO:0005829	932	264	0.196	0.115
ENDOSOME%GO%GO:0005768	340	100	0.174	0.107
NUCLEUS%GO%GO:0005634	3979	927	0.161	0.104
MEPRIN A COMPLEX% GO% GO:0017090	1	1	0.144	0.017
CELL JUNCTION% GO% GO:0030054	382	90	0.137	0.032
PROTEIN COMPLEX%GO%GO:0043234	2337	588	0.125	0.020
SYNAPTIC MEMBRANE%GO%GO:0097060	103	26	0.123	0.026
SARCOLEMMA%GO%GO:0042383	94	37	0.121	0.074
SYNAPSE%GO%GO:0045202	427	91	0.121	0.024
ORGANELLE PART% GO% GO:0044422	3721	898	0.118	0.020
MEMBRANE-BOUNDED ORGANELLE%GO%GO:0043227	6708	1565	0.109	0.018
SYNAPSE PART%GO%GO:0044456	293	59	0.105	0.018

Pathological LVH

Reactome	inPopulation	inStudySet	estimate	std.error
MHC CLASS II ANTIGEN PRESENTATION::REACTOME::REACT_127 194.1	80	41	0.997	0.002
MITOCHONDRIAL PROTEIN IMPORT::REACTOME::REACT 144481.1	47	20	0.972	0.005
THE CITRIC ACID (TCA) CYCLE AND RESPIRATORY ELECTRON TRANSPORT::REACTOME::REACT_114046	148	69	0.944	0.014
.4 FATTY ACID, TRIACYLGLYCEROL, AND	187	69	0.937	0.007
KETONE BODY METABOLISM::REACTOME::REACT_1013 29.5	107			01007
GLUCOSE METABOLISM::REACTOME::REACT_8063	69	30	0.867	0.018
7.5 AMINO ACID AND DERIVATIVE METABOLISM::REACTOME::REACT_3334	196	78	0.773	0.040
7.6 CELL SURFACE INTERACTIONS AT THE VASCULAR	86	33	0.545	0.021
WALL::REACTOME::REACT_86886.5 MUSCLE CONTRACTION::REACTOME::REACT_108	53	24	0.537	0.029
582.5 DEVELOPMENTAL BIOLOGY::REACTOME::REACT_115492.4	387	127	0.495	0.023
PLATELET DEGRANULATION::REACTOME::REACT_ 102232.5	88	40	0.479	0.036
COLLAGEN FORMATION::REACTOME::REACT_131580	56	26	0.442	0.037
.1 CIRCADIAN CLOCK::REACTOME::REACT 109335.5	55	23	0.433	0.007
STRIATED MUSCLE CONTRACTION::REACTOME::REACT_886 44.5	28	14	0.429	0.027
PRE-MRNA SPLICING::REACTOME::REACT_95764.5	129	42	0.391	0.041

ELONGATION ARREST AND	38	15	0.388	0.023
RECOVERY::REACTOME::REACT_82766.5 COLLAGEN BIOSYNTHESIS AND	56	26	0.385	0.038
MODIFYING ENZYMES::REACTOME::REACT_138096.1				
MRNA SPLICING::REACTOME::REACT_98753.5	129	42	0.375	0.014
CHAPERONIN-MEDIATED PROTEIN	44	18	0.370	0.026
FOLDING::REACTOME::REACT_106427.5 MEMBRANE	119	44	0.356	0.015
TRAFFICKING::REACTOME::REACT_8830 7.5				
INTEGRATION OF ENERGY METABOLISM::REACTOME::REACT_1058	129	39	0.348	0.015
10.5	10	0	0.044	
PERK REGULATED GENE EXPRESSION::REACTOME::REACT_10846	13	8	0.346	0.009
9.5 LATENT INFECTION OF HOMO SAPIENS	32	15	0.344	0.018
WITH MYCOBACTERIUM	52	15	0.544	0.010
TUBERCULOSIS::REACTOME::REACT_146 901.1				
RESPONSE TO ELEVATED PLATELET CYTOSOLIC	93	41	0.307	0.043
CA2+::REACTOME::REACT_32515.6	32	15	0.207	0.015
PHAGOSOMAL MATURATION (EARLY ENDOSOMAL	32	15	0.307	0.015
STAGE)::REACTOME::REACT_126778.1 GENERIC TRANSCRIPTION	141	43	0.290	0.014
PATHWAY::REACTOME::REACT_85098.5 TRNA	45	16	0.279	0.010
AMINOACYLATION::REACTOME::REACT	45	10	0.279	0.010
_78082.5 PHASE II	59	19	0.264	0.013
CONJUGATION::REACTOME::REACT_876 08.5				
CYTOSOLIC TRNA AMINOACYLATION::REACTOME::REACT	27	11	0.263	0.014
_59282.6				
PROTEIN FOLDING::REACTOME::REACT_106260.5	49	19	0.257	0.023
NGF PROCESSING::REACTOME::REACT_83522.	13	6	0.254	0.012
5	10	<i>.</i>	0.251	0.020
ACTIVATION OF GENES BY ATF4::REACTOME::REACT_131139.1	10	6	0.251	0.020
COOPERATION OF PREFOLDIN AND TRIC CCT IN ACTIN AND TUBULIN	31	14	0.249	0.007
FOLDING::REACTOME::REACT_96856.5 HEME	9	6	0.234	0.019
BIOSYNTHESIS::REACTOME::REACT_985	2	0	0.234	0.019
85.5 INTERFERON	70	23	0.214	0.008
SIGNALING::REACTOME::REACT_127785.				
PLATELET ACTIVATION, SIGNALING	197	70	0.209	0.020
AND AGGREGATION::REACTOME::REACT_103				
583.5 CS DS	13	7	0.195	0.011
DEGRADATION::REACTOME::REACT_145 805.1				
KERATAN SULFATE	11	6	0.188	0.014
DEGRADATION::REACTOME::REACT_143 490.1				
REGULATION OF INSULIN SECRETION::REACTOME::REACT_88056.5	101	32	0.164	0.009
=				

PI3K EVENTS IN ERBB4	34	14	0.164	0.005
SIGNALING::REACTOME::REACT_118344.	51	11	0.101	0.000
BRANCHED-CHAIN AMINO ACID CATABOLISM::REACTOME::REACT_3299 0.6	17	10	0.158	0.027
L1CAM INTERACTIONS::REACTOME::REACT_101	81	33	0.150	0.021
259.5 SYNTHESIS AND INTERCONVERSION OF NUCLEOTIDE DI- AND	18	8	0.149	0.006
TRIPHOSPHATES::REACTOME::REACT_82 335.5				
INSULIN RECEPTOR RECYCLING::REACTOME::REACT_81379.	25	12	0.145	0.007
5 POST NMDA RECEPTOR ACTIVATION	33	16	0.140	0.005
EVENTS::REACTOME::REACT_111033.5 HYALURONAN	13	6	0.138	0.005
METABOLISM::REACTOME::REACT_1450	15	0	0.150	0.005
24.1 REGULATION OF WATER BALANCE BY RENAL	47	17	0.135	0.012
AQUAPORINS::REACTOME::REACT_97951 .5				
CREB PHOSPHORYLATION THROUGH THE ACTIVATION OF	16	10	0.129	0.006
CAMKII::REACTOME::REACT_145749.1 INTERLEUKIN-2	42	15	0.129	0.005
SIGNALING::REACTOME::REACT_29186.6 REGULATION OF COMPLEMENT	14	6	0.125	0.006
CASCADE::REACTOME::REACT_144679.1 CATION-COUPLED CHLORIDE	7	4	0.125	0.008
COTRANSPORTERS::REACTOME::REACT _81104.5	/	4	0.125	0.008
BASIGIN INTERACTIONS::REACTOME::REACT_915	27	12	0.123	0.008
19.5	10	-	0.120	0.000
HYALURONAN UPTAKE AND DEGRADATION::REACTOME::REACT_131 431.1	10	5	0.120	0.008
TRANSFERRIN ENDOCYTOSIS AND RECYCLING::REACTOME::REACT_146500	27	12	0.117	0.007
.1 SIGNALING BY	227	73	0.114	0.008
NGF::REACTOME::REACT_86675.5 GAP JUNCTION TRAFFICKING AND REGULATION::REACTOME::REACT_98857	13	10	0.112	0.004
.5 RAS ACTIVATION UOPN CA2+ INFUX	17	10	0.112	0.015
THROUGH NMDA RECEPTOR::REACTOME::REACT_141113.1 UNBLOCKING OF NMDA RECEPTOR,	16	8	0.111	0.009
GLUTAMATE BINDING AND ACTIVATION::REACTOME::REACT_84448.				
5 GLUTATHIONE	20	7	0.111	0.011
CONJUGATION::REACTOME::REACT_289 85.6				
ACTIVATION OF NMDA RECEPTOR UPON GLUTAMATE BINDING AND POSTSYNAPTIC	37	17	0.109	0.005
EVENTS::REACTOME::REACT_109325.5 GLYCOLYSIS::REACTOME::REACT_96470	35	15	0.108	0.012
.5 CREB PHOSPHORYLATION THROUGH	27	13	0.105	0.004
THE ACTIVATION OF		10	0.105	0.001

RAS::REACTOME::REACT_130630.1				
NGF SIGNALLING VIA TRKA FROM THE PLASMA MEMBRANE::REACTOME::REACT_91043.	135	50	0.102	0.010
5 REGULATION OF GENE EXPRESSION BY HYPOXIA-INDUCIBLE	9	6	0.101	0.008
FACTOR::REACTOME::REACT_137830.1 INTERLEUKIN RECEPTOR SHC SIGNALING::REACTOME::REACT_76978.5	28	10	0.100	0.006
GOBP	inPopulation	inStudySet	estimate	std.error
POSITIVE REGULATION OF CELLULAR PROCESS% GO% GO:0048522	2901	796	0.892	0.039
METABOLIC PROCESS%GO%GO:0008152	4430	1138	0.780	0.067
CELL-CELL SIGNALING%GO%GO:0007267	458	124	0.651	0.040
CELLULAR COMPONENT ORGANIZATION%GO%GO:0016043	2581	670	0.510	0.096
INTRACELLULAR TRANSPORT%GO%GO:0046907	544	163	0.503	0.029
TISSUE DEVELOPMENT% GO% GO:0009888	998	308	0.496	0.085
CELLULAR COMPONENT	2647	680	0.315	0.083
ORGANIZATION OR BIOGENESIS% GO% GO:0071840	1766	497	0.200	0.042
REGULATION OF BIOLOGICAL QUALITY%GO%GO:0065008	1766	487	0.296	0.043
NEGATIVE REGULATION OF NITROGEN COMPOUND METABOLIC	897	265	0.252	0.030
PROCESS%GO%GO:0051172 CELLULAR	1007	266	0.223	0.022
LOCALIZATION%GO%GO:0051641 EPITHELIUM	492	155	0.220	0.070
DEVELOPMENT% GO% GO:0060429 NEGATIVE REGULATION OF RNA METABOLIC PROCESS% GO% GO:0051253	821	241	0.187	0.028
REGULATION OF RNA METABOLIC PROCESS%GO%GO:0051252	1841	503	0.181	0.065
APOPTOTIC PROCESS%G0%G0:0006915	402	134	0.175	0.041
IMMUNE SYSTEM	888	237	0.173	0.027
PROCESS% GO% GO:0002376 NEGATIVE REGULATION OF APOPTOTIC	583	193	0.157	0.038
PROCESS%GO%GO:0043066 ESTABLISHMENT OF PROTEIN LOCALIZATION%GO%GO:0045184	410	136	0.156	0.029
NEGATIVE REGULATION OF NUCLEOBASE-CONTAINING COMPOUND	884	258	0.139	0.022
METABOLIC PROCESS%GO%GO:0045934 NEGATIVE REGULATION OF CELLULAR	1209	351	0.135	0.020
METABOLIC PROCESS%G0%G0:0031324 CATABOLIC PROCESS%G0%G0:0009056	927	285	0.133	0.068
ESTABLISHMENT OF LOCALIZATION IN	786	218	0.128	0.043
CELL%GO%GO:0051649 SMALL MOLECULE METABOLIC	1065	333	0.113	0.047
PROCESS% GO% GO:0044281 NEGATIVE REGULATION OF CELL DEATH% GO% GO:0060548	615	200	0.111	0.029
NEGATIVE REGULATION OF PROGRAMMED CELL	588	194	0.104	0.016
DEATH%GO%GO:0043069 PROTEIN TRANSPORT%GO%GO:0015031	387	127	0.102	0.018

GOCC

inPopulation

inStudySet

estimate std.error

CELL FRACTION%GO%GO:0000267	825	257	0.718	0.180
CYTOSOL%GO%GO:0005829	932	286	0.633	0.222
MITOCHONDRIAL PART%GO%GO:0044429	466	198	0.627	0.220
SPLICEOSOMAL COMPLEX%GO%GO:0005681	106	39	0.578	0.202
TRANSCRIPTION FACTOR COMPLEX%GO%GO:0005667	314	87	0.494	0.176
EXTRACELLULAR REGION	799	242	0.437	0.136
PART%GO%GO:0044421 NUCLEAR UBIQUITIN LIGASE	21	11	0.349	0.126
COMPLEX%GO%GO:0000152 ENDOPLASMIC RETICULUM-GOLGI	36	16	0.294	0.107
INTERMEDIATE COMPARTMENT% GO% GO:0005793				
EXTRACELLULAR	238	85	0.269	0.107
MATRIX%GO%GO:0031012 MYOFIBRIL%GO%GO:0030016	140	51	0.265	0.097
STRESS FIBER% GO% GO:0001725	53	24	0.242	0.085
PROTEASOME COMPLEX%GO%GO:0000502	17	8	0.238	0.082
CONTRACTILE FIBER%GO%GO:0043292	153	55	0.233	0.079
CYTOPLASMIC	25	10	0.202	0.073
MICROTUBULE%GO%GO:0005881 POLYSOME%GO%GO:0005844	27	10	0.202	0.070
		10		
EXTRINSIC TO PLASMA MEMBRANE%GO%GO:0019897	71	29	0.198	0.064
MICROTUBULE ASSOCIATED COMPLEX%GO%GO:0005875	63	20	0.191	0.067
CAVEOLA%GO%GO:0005901	64	26	0.185	0.064
PEROXISOMAL PART% GO% GO:0044439	53	21	0.175	0.060
ACTIN FILAMENT	56	24	0.174	0.064
BUNDLE%GO%GO:0032432	10.4			0.0.44
LATE ENDOSOME%GO%GO:0005770	106	37	0.172	0.061
MEMBRANE RAFT%GO%GO:0045121	217	74	0.169	0.062
INTRACELLULAR%GO%GO:0005622	8779	2227	0.161	0.161
EXTRINSIC TO MEMBRANE% GO% GO:0019898	96	34	0.161	0.052
SIGNALOSOME%GO%GO:0008180	9	6	0.160	0.056
MICROBODY PART% GO% GO:0044438	53	21	0.158	0.056
SYNAPSE%GO%GO:0045202	427	110	0.148	0.148
CELL JUNCTION%GO%GO:0030054	382	102	0.142	0.142
APICAL PART OF CELL%GO%GO:0045177	296	86	0.140	0.104
CELL SURFACE% GO% GO:0009986	550	161	0.138	0.137
INTERNAL SIDE OF PLASMA MEMBRANE% GO% GO:0009898	90	33	0.134	0.047
COATED MEMBRANE%GO%GO:0048475	35	13	0.122	0.041
MEMBRANE COAT%GO%GO:0030117	35	13	0.120	0.040
ANAPHASE-PROMOTING COMPLEX%GO%GO:0005680	17	9	0.116	0.038
INTRINSIC TO	2162	223	0.107	0.107
MEMBRANE% GO% GO:0031224 CORTICAL	60	20	0.106	0.036
CYTOSKELETON%GO%GO:0030863 LATE ENDOSOME	16	9	0.101	0.033
MEMBRANE% GO% GO:0031902				

Supplementary Table S8. Functional enrichment of genes in the top 25th percentile of differential wiring for over-represented Gene Ontology (GO) Biological Process (BP), and Cellular Component (CC) terms, as well as Reactome pathways. inPopulation=total number of genes per term; inStudySet=number of genes in a network that mapped to a term; estimate=posterior probability estimate of functional enrichment; std.error=standard error of posterior probability estimate

Reactome	inPopulation	inStudySet	estimate	std.error
BRANCHED-CHAIN AMINO ACID CATABOLISM::REACTOME::REACT_32990. 6	17	6	0.712	0.027
GOBP	inPopulation	inStudySet	estimate	std.error
MYELIN ASSEMBLY%GO%GO:0032288	11	4	0.921	0.035
HYDROGEN PEROXIDE METABOLIC PROCESS% GO% GO:0042743	25	5	0.624	0.059
COENZYME METABOLIC PROCESS%GO%GO:0006732	145	13	0.618	0.076
MRNA SPLICE SITE SELECTION%G0%G0:0006376	12	4	0.617	0.073
NEGATIVE REGULATION OF	12	3	0.438	0.035
TRANSLATIONAL INITIATION%GO%GO:0045947				
PROTEIN LOCALIZATION IN MITOCHONDRION%GO%GO:0070585	27	4	0.376	0.044
POSITIVE REGULATION OF	10	3	0.322	0.057
MACROAUTOPHAGY%GO%GO:0016239 REGULATION OF MUSCLE	27	4	0.313	0.028
ADAPTATION%GO%GO:0043502 REGULATION OF VASCULAR	23	4	0.269	0.046
ENDOTHELIAL GROWTH FACTOR RECEPTOR SIGNALING				
PATHWAY%GO%GO:0030947 SPLICEOSOMAL COMPLEX	19	4	0.264	0.060
ASSEMBLY%GO%GO:0000245				
GOCC	inPopulation	inStudySet	estimate	std.error
NA	NA	NA	NA	NA

References

- Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, et al. Arrayexpress update--from an archive of functional genomics experiments to the atlas of gene expression. *Nucleic Acids Res*. 2009;37:D868-872
- 2. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics*. 2003;4:249-264
- 3. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy--analysis of affymetrix genechip data at the probe level. *Bioinformatics*. 2004;20:307-315
- 4. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: Gene-centered information at ncbi. *Nucleic acids research*. 2011;39:D52-57
- 5. Miller JA, Horvath S, Geschwind DH. Divergence of human and mouse brain transcriptome highlights alzheimer disease pathways. *Proc Natl Acad Sci U S A*. 2010;107:12698-12703
- 6. Reverter A, Chan EK. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. *Bioinformatics*. 2008;24:2491-2497
- 7. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human b cells. *Nat Genet*. 2005;37:382-390
- 8. Magwene PM, Kim J. Estimating genomic coexpression networks using first-order conditional independence. *Genome Biol.* 2004;5:R100
- 9. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. *Science*. 2002;296:910-913
- 10. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. *Nature*. 2001;411:41-42
- 11. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. *PLoS Comput Biol.* 2007;3:e59
- 12. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, et al. Eigenvector centrality mapping for analyzing connectivity patterns in fmri data of the human brain. *PLoS One*. 2010;5:e10232
- 13. Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. *Proceedings of the National Academy of Sciences of the United States of America*. 2008;105:4323-4328
- 14. Arita M. The metabolic world of escherichia coli is not small. *Proc Natl Acad Sci U S* A. 2004;101:1543-1547
- 15. Travers J, Milgram S. An experimental study of the small world problem. *Sociometry*. 1969;32:425-443
- 16. Wuchty S, Almaas E. Peeling the yeast protein network. *Proteomics*. 2005;5:444-449
- 17. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. *Phys. Rev. E.* 2004;70
- 18. Newman ME. Modularity and community structure in networks. *Proc Natl Acad Sci* USA. 2006;103:8577-8582
- Drozdov I, Ouzounis CA, Shah AM, Tsoka S. Functional genomics assistant (fuga): A toolbox for the analysis of complex biological networks. *BMC Res Notes*. 2011;4:462
- 20. Csárdi G, Nepusz T. The igraph software package for complex network research. *InterJournal Complex Systems*. 2006:1695
- 21. Weng MP, Liao BY. Mamphea: A web tool for mammalian phenotype enrichment analysis. *Bioinformatics*. 2010;26:2212-2213
- 22. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* 2009;37:1-13

- 23. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, et al. Reactome knowledgebase of human biological pathways and processes. *Nucleic Acids Res.* 2009;37:D619-622
- 24. Bauer S, Robinson PN, Gagneur J. Model-based gene set analysis for bioconductor. *Bioinformatics*. 2011;27:1882-1883
- 25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genomewide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102:15545-15550
- 26. Hu P, Zhang D, Swenson L, Chakrabarti G, Abel ED, Litwin SE. Minimally invasive aortic banding in mice: Effects of altered cardiomyocyte insulin signaling during pressure overload. *Am J Physiol Heart Circ Physiol*. 2003;285:H1261-1269
- 27. De Bono JP, Adlam D, Paterson DJ, Channon KM. Novel quantitative phenotypes of exercise training in mouse models. *Am J Physiol Regul Integr Comp Physiol*. 2006;290:R926-934
- 28. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, et al. Contrasting roles of nadph oxidase isoforms in pressure-overload versus angiotensin ii-induced cardiac hypertrophy. *Circ Res.* 2003;93:802-805
- 29. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. *Mol Cell Proteomics*. 2010;9:2048-2062
- 30. Waanders LF, Almeida R, Prosser S, Cox J, Eikel D, Allen MH, et al. A novel chromatographic method allows on-line reanalysis of the proteome. *Mol Cell Proteomics*. 2008;7:1452-1459
- 31. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by ms/ms and database search. *Anal Chem.* 2002;74:5383-5392
- 32. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. *Anal Chem.* 2003;75:4646-4658
- 33. Smyth GK. Limma: Linear models for microarray data. In: R. Gentleman VC, S. Dudoit, R. Irizarry, W. Huber, ed. *Bioinformatics and computational biology solutions using r and bioconductor*. New York: Springer; 2005:397–420.
- 34. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: A networkbased method for gene-set enrichment visualization and interpretation. *PLoS One*. 2010;5:e13984.