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Abstract 

The conventional reductionist approach to cardiovascular research investigates 

individual candidate factors or linear signaling pathways but ignores more complex 

interactions in biological systems. The advent of molecular profiling technologies that 

focus on a global characterisation of whole complements, allows an exploration of the 

interconnectivity of pathways during pathophysiologically relevant processes, but has 

brought about the issue of statistical analysis and data integration. Proteins identified by 

differential expression as well as those in protein-protein interaction networks identified 

through experiments and through computational modelling techniques can be used as 

an initial starting point for functional analyses. In combination with other -omics 

technologies, such as transcriptomics and metabolomics, proteomics explores different 

aspects of disease and the different pillars of observations facilitate the data integration 

in disease-specific networks. Ultimately, a systems biology approach may advance our 

understanding of cardiovascular disease processes at a “biological pathway” instead of 

a “single molecule” level and accelerate progress towards disease-modifying 

interventions. 
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1. Introduction 

Proteomics represents the large-scale analysis of proteins, particularly their structures 

and functions. The term "proteomics" was coined to make an analogy with genomics, 

the study of the genome. While the genome is just the "blueprint" for the proteins, the 

proteins execute cellular function. Importantly, the transcriptome is not linearly 

proportional to proteome and many human diseases result from alterations in the 

proteome. In the first part of this review, we provide a short summary of proteomics 

techniques that have been extensively reviewed elsewhere1-3. Knowing the major 

limitations and advantages of the different proteomic techniques is essential for their 

successful application. An overview of systems biology approaches and examples 

follows, along with some of the resources available. Computational methods for dealing 

with the unique challenges of proteomics data will be key to fulfil the promise of systems 

biology. 

 

2. Proteomics 

Before summarizing different proteomic strategies (Figure 1), a few points should be 

emphasized4:  

1) No proteomic technology can currently resolve the entire complexity of the 

mammalian proteome.  

2) With any proteomic technique, there is bias towards more abundant proteins.  

3) In general, there is a trade off between how many proteins can be quantified and how 

accurately they can be quantified.  

4) Inevitably, information is lost by the propagation of quantitative peptide information to 

protein changes.  Table 1 gives a brief overview of the advantages and 

disadvantages of the following proteomics techniques. A
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2.1. Two-dimensional gel electrophoresis (2-DE). 2-DE gels allow separation of 

proteins based on their isoelectric point (pI) and molecular weight (Mw)5. The first 

dimension involves separating proteins according to their pI. A protein mixture is loaded 

onto a strip with an immobilised pH gradient. Once an electric field is applied, the 

proteins migrate to their pI where they become zwitterionic, i.e. they lose their net 

charge and stop migrating (isoelectric focusing). After isoelectric focusing is complete, 

the immobilised pH gradient strips are transferred onto large-format gels for separation 

in the second dimension, where proteins are resolved according to their molecular mass 

by SDS-PAGE.  

Unlike SDS-PAGE, 2-DE gels produce complex maps of proteomes that are 

visualised as discrete protein 'spots'. Since pI and Mw are independent properties, 2-DE 

gels can resolve many more proteins than SDS-PAGE. Importantly, the same protein 

may be present in multiple spots on a gel. Shifts in pI or molecular weight indicate the 

presence of post-translational modifications, protein degradation or protein isoforms6, 7. 

Protein features are visualised with Coomassie or silver staining and differential 

expression between samples is determined using relative densitometric quantification. 

However, gel-to-gel variability can limit the quantitative accuracy and prohibit the 

detection of minor differences in expression.  

A more sophisticated 2-DE technique is difference gel electrophoresis (DIGE, 

Figure 2A) 8. DIGE involves fluorescent labelling of protein mixtures with Cy-dyes in 

order to determine relative differences in protein expression. An internal standard 

comprising of the pooled experimental samples is included, which is representative of all 

samples. The sensitivity of detection of DIGE is comparable with the sensitivity of silver 

staining9 and the dyes are matched for pI and Mw. The main advantage of DIGE over A
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conventional 2-DE gels is that samples can be multiplexed on the same gel thus 

reducing the number of gels needed and limiting experimental variation. DIGE employed 

with an internal standard reliably quantifies differences as low as 10% in protein 

expression10. The gels are scanned using a fluorescence scanner, which specifically 

measures the emission wavelength of each Cy-dye. Commercial software packages 

match protein features and calculate differential expression from the scanned gel 

images. Normalisation of protein levels across gels is performed by comparing the 

protein ratios to the internal standard that is co-detected on each gel.  

Unlike other proteomic techniques, quantitation by 2-DE is performed at the 

protein, not the peptide level and the quantitation is uncoupled from the identification by 

mass spectrometry (MS).  Silver staining can be used to visualise protein features on a 

gel to facilitate excision of the relevant spots for MS. Alternatively, spots are directly 

picked from fluorescent gels using a robotic spot picker. Spots are then subjected to in-

gel tryptic digestion before protein identification.  

One of the main caveats of the 2-DE approach is that high abundant proteins 

mask less abundant proteins. This can be partially addressed by using gradients with a 

narrow pH range (Figure 2B). However, separation in the first dimension and in 

particular the transition from the first to the second dimension is not loss free and very 

large, small, and hydrophobic proteins remain difficult to resolve. 

 

2.2. Liquid-chromatography tandem mass spectrometry (LC-MS/MS). LC-MS/MS is 

the current gold standard in proteomics. The basic principle of MS involves measuring 

the mass to charge ratio (m/z) of an ionised peptide and its fragmentation products. 

Proteins are initially digested by enzymes such as trypsin to produce peptide fragments 

that are easier to resolve by reverse-phase LC and ionize by electrospray MS11. A
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Depending on their hydrophobicity, the peptides elute at different time points from the 

reverse phase column (retention time). A typical workflow using LC-MS/MS involves a 

regular survey scan to record the masses and the intensities of the eluting peptides. The 

most abundant precursor ions eluting from the column are selected for fragmentation 

(MS/MS). The amino acid sequence information obtained from MS/MS data allows the 

identification of the protein. Peptide parameters, such as spectral counts, ion intensities 

and chromatographic peak area, can provide a quantitative index for protein abundance 

(label-free quantitation)12. The versatility of mass spectrometric technology has spawned 

numerous different mass spectrometers with MALDI-TOF-TOF, Q-TOF and Orbitrap 

mass analysers13 being among the common ones currently in use for discovery 

proteomics.  

 

2.3. Gel-LC-MS/MS. Pre-fractionation by SDS-PAGE prior to MS has proven useful in 

the characterization of samples that are not amenable to separation by 2-DE. It also 

helps to overcome the single greatest cause of bias against low abundance proteins - 

the stochastic under sampling of low abundance peptides because high-abundance 

peptides dominate the duty cycle of the mass spectrometer. For gel-LC-MS/MS analysis, 

proteins are separated by SDS-PAGE, the entire gel lane is divided into a series of 

bands, the bands are excised without leaving empty gel pieces behind, digested with 

trypsin and LC-MS/MS analysis is performed on each of the bands14, 15. Since gel bands 

tend to be mixtures of proteins, LC separation is essential for protein identification and 

quantitation, i.e. by spectral counting16. Spectral counting has become a popular 

strategy to quantitate relative protein abundance but is less reliable for complex 

mixtures. Generally, the more abundant a protein, the more likely it is detected by 

MS/MS. The spectral counts are derived from the number of MS/MS spectra A
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corresponding to a particular protein.  

  In the gel-LC-MS/MS approach, information on the native Mw of a protein is 

preserved. If protein degradation has occurred prior to tryptic digestion, peptides are 

detected by MS in gel segments below the expected Mw of the native proteins (Figure 

2C). Thus, verification whether differentially expressed proteins are confined to the 

same gel bands is essential. Otherwise, a degraded protein may appear upregulated 

due to its characteristic “laddering” on the SDS-PAGE (Figure 2D). Alternatively, protein 

fragments may be too small and escape detection because they migrated ahead of the 

buffer front. On the other hand, information on proteolytic degradation products is 

important and lost in conventional shotgun proteomics analysing tryptic peptides without 

prior separation at the protein level. 

 

2.4. Shotgun proteomics. Apart from gel-based approaches, there are gel-free 

methods to quantify differences in protein expression based on peptide abundance. 

While these shot-gun proteomic methods can mine deeper into the proteome, problems 

arise with quantitation if samples are too complex. MS is not inherently quantitative 

because of differences in the ionization efficiency. The most abundant ions will attract 

the most charges during electrospray ionization, making it less likely for low-level 

peptides to get ionized. To avoid false positive protein changes due to co-eluting high-

abundant peptides, labelling techniques should be used for reliable quantitation. Popular 

labelling methods include isobaric tagging for relative and absolute quantification 

(iTRAQ), tandem mass tags (TMT) and stable isotope labelling by amino acids in cell 

culture (SILAC) 17. iTRAQ is currently available as 4-plex and 8-plex, allowing the 

relative quantification of up to eight samples, whereas labelling of TMT and SILAC can 

been used with six and three samples, respectively18. However, peptides are just a A
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surrogate measure and not always reliable for protein quantitation, i.e. if they are subject 

to post-translational modifications or proteolysis.  

 

2.4.1. SILAC. SILAC makes use of non-radioactive isotope labels to label proteins with 

light (eg. 12C) and heavy isotopes (eg. 13C)18. Samples can be multiplexed and analysed 

during the same MS run therefore minimising experimental error19. The SILAC pairs co-

elute during chromatography but the corresponding peptides of the heavy and light 

isoform appear with a characteristic mass shift. The relative quantity of each protein can 

be calculated by the differences in the peak intensities of SILAC labelled peptides. The 

use of SILAC to quantify differential levels of proteins goes beyond using cells in culture. 

SILAC labelled mice have been described with near complete labelling of all proteins 

although the SILAC diet is expensive20. Metabolic labeling also introduces information 

on amino acid synthesis and sourcing, protein assembly and turnover kinetics. 

 

2.4.2.  iTRAQ, TMT. In instances where human tissue is used, iTRAQ or TMT are the 

only option for multiplexing clinical samples for differential expression studies by LC-

MS/MS21 but these techniques are not without caveats22: 1) One disadvantage of the 

iTRAQ and the TMT system over SILAC is the fact that labelling is performed at the 

peptide level and occurs late in the experimental process. Before labelling, proteins are 

first extracted from cells or tissues and digested to peptides. This is a potential source of 

variation. 2) Unlike SILAC, quantitation is performed at the MS/MS, not the MS level. 

The peptides from different samples maintain their identical mass to charge (m/z) ratios 

after labelling (MS). Only upon fragmentation (MS/MS), the isobaric mass tags release 

their different reporter ions with a single isotopic substitution per tag and provide 

quantitative information for each individual sample. A commonly observed problem in A
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iTRAQ experiments is that a complex background can lead to underestimation of protein 

fold changes. During precursor ion selection, more than one peptide may be within the 

mass window selected for fragmentation. In such mixed MS/MS spectra, reporter ions 

originating from peptides of different proteins are erroneously combined for 

quantification.  

 

2.5. Protein identification. While accurate and accessible databases are needed for 

each of the ‘omics’ fields, proteomics is perhaps the most dependent on these 

resources. The technologies for identifying and quantifying proteins are reliant on 

comprehensive databases for protein identification and peptide quantification. Whilst not 

under the scope of systems biology, these databases provide a foundation for the latter 

analyses as the curation and maintenance of these databases is vital for the correct 

identification and quantification of the examined proteins.  

For functional and sequence based databases, UniProt is one of the most 

comprehensive. UniProt consists of several classifications: Swiss-Prot and TrEMBL 

contain sequence and functional information about proteins, UniRef and UniParc contain 

sequence and archived sequence records and, when available, supporting data such as 

literature references and cross-referenced databases23. Programmes such as Mascot, 

SEQUEST or X!Tandem, search FASTA protein sequences obtained from public 

databases such as UniProt. After performing an "in silico fragmentation" with known 

enzyme specificity, the peak mass lists with intensities (the experimental data) are 

searched against the in silico-fragmented database. Parent ion masses are scanned 

against the masses derived from the database sequences. If there is a match within a 

certain mass tolerance, the observed MS/MS spectra are then compared with the 

theoretical sequence-derived ion series. While not explicitly covered here, the review A
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and commentary by Noble and MacCoss provide insight into these methodologies and 

techniques24. The scoring algorithms can produce different results and the reliance on 

single-peptide identifications in large-scale datasets is a potential cause of false 

identifications. Most proteomic studies only report identifications with a minimum of two 

unique peptides or include the MS/MS spectra for single-peptide identifications. 

 

3. Systems biology approaches.  

3.1 Cellular and subcellular proteome identification. Technological advances in the 

past 5-10 years have made large ‘omics’ experiments feasible, where biological changes 

can be assessed at the systems level rather than at an individual species level (Figure 

3).  High throughput proteomics is no different as one can now identify and quantify the 

proteins present in a specific cell type or subcellular fraction.  As proteins can be present 

at varying levels in different cellular systems, it is imperative to know the baseline 

measurements for cells and systems specific to cardiovascular disease. In that respect, 

the proteomes of several cardiovascular specific cell types have been characterised in 

the past few years, including human arterial smooth muscle cells25, human early pro-

angiogenic cells26, rat cardiac stem cells and neonatal cardiomyocytes27 and human left 

ventricle28. Recently, Burkhart et al. characterised the proteome of human platelets 

within and between healthy subjects. They identified approximately 4,000 unique 

proteins and showed that 85% of the platelet proteome did not vary across subjects29. 

Subcellular fractions can also be informative for cardiovascular disease.  Several of 

these fractions have been analysed, including the extracellular matrix (ECM) in human 

aorta14, the mitochondrial proteome in mouse30 and the rodent cardiac myofilament31.   

As an example, Figure 4 illustrates the proteomic network structure of ECM 

proteins in two different murine cell types: primary aortic smooth muscle cells (Figure A
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4A) and cardiac fibroblasts (Figure 4B). Both are correlation networks where the links 

between nodes (proteins) represent correlation values >0.9. The Venn diagrams show 

the total number of proteins identified in the two cell types and those in common 

between the two (Figure 4C); the number of nodes (proteins) in the networks as well as 

the number of shared nodes between the two (Figure 4D); finally, the number of links 

(correlations > 0.9) for SMC and CF as well as the ones in common between the two 

(Figure 4E). The two networks and the corresponding nodes and links highlight the 

differences in the relationship between the ECM proteins in two different cell types.  

For a systems biology approach of cardiovascular disease, it is important to 

identify and quantify proteomes in different species, tissue, cellular or subcellular 

compartments, as the differences, shown here in two ECM-producing cell types, may be 

specific to the defined system.  The inclusion of these proteomes in public repositories 

will aid further systems biology as studies as the proteomics data will be available to 

other researchers. The biggest public repository of proteomics data is the PRoteomics 

IDEntifications (PRIDE) database supported the European Bioinformatics Institute 

(EBI)32. As of the data of submission for this review, PRIDE contained over 26,000 

proteomics experiments with the associated studies.  

 

3.2. Differential protein expression analysis. With a defined system, one can study 

changes that result after a systematic perturbation.  These perturbations can come in 

the form of inhibition, over-expression, incubation or a number of other cellular 

manipulation techniques, but also as a comparison between normal and disease 

samples. The system perturbation approach is not unique to proteomics; the other 

`omics’ fields use similar approaches; a large number of studies have been performed 

on transcriptomics and differential gene expression analysis and several methods have A
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been developed. Proteomics faces similar statistical and computational considerations 

genomics, but there are also challenges specific to proteomics, especially label-free 

techniques. Several studies, including our own14, 15, 33, 34, have applied standard 

statistical methods, to cardiovascular proteomics data35-37. While these methods may be 

appropriate, i.e. for analysis of DIGE data, they are not optimal for label free, spectral 

count protein expression data. Although many proteins are identified, less abundant 

proteins often contain one or more missing values across samples38. This 

presence/absence dichotomy is not suitable for basic imputation methods. Missing 

values will skew statistical tests that assume normality and standard statistical methods 

(Student’s t-test, Analysis of Variance - ANOVA, linear regression) may not accurately 

determine differential expression39-41. On the other hand, excluding proteins with missing 

spectral counts will inherently create a bias towards high abundant proteins39. Low 

abundant proteins, however, are often informative, especially when comparing disease 

states, as the presence in one state and the absence in another can suggest a 

functional role for that protein.  

The small number of replicates within an experiment reduces the robustness and 

increases the noise to signal ratio42. Non-parametric tests, like the Wilcox rank-sum test, 

have limited power when used with the small sample sizes often found in proteomic 

studies41. Applying multiple testing corrections becomes problematic as permutation or 

bootstrapping techniques are not feasible with small sample sizes. With this in mind, 

several methods have been developed specifically for evaluating protein differential 

expression, which take into consideration these limitations. Some methods address the 

non-normal distribution properties of the data, where the data is normalised and 

transformed to better fit the standard statistical tests.  Three of the commonly used 

methodologies for this approach are the Normalized Spectral Abundance Factor (NSAF) A
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43, the Power Law Global Error Model (PLGEM) 44 and the Normalized Spectral Index 

(SIN)45 (Table 2). These methods, however, do not take into consideration the small 

sample sizes that are common in proteomics experiments nor do they directly correct for 

multiple testing.  

Other methods incorporate techniques that address both the non-normal 

distributions and the limited number of replications. The Spectral Index (SpI)46, Qspec47, 

and the hybrid approach proposed by Wang et al. 39, are three examples of methods that 

account for small sample sizes and do not require the data to be normally distributed 

(Table 2).  These methods also directly incorporate multiple testing corrections. Unlike 

gene expression microarray analyses, there is no standard method for normalisation 

and differential expression analyses in proteomics. Due to the variability between 

experiments and methodologies, statisticians and computational biologists should guide 

proteomic analyses. 

 

3.3. Incorporating functional and pathway information. Functional information such 

as gene ontology (GO) and pathway resources can inform on the biological function of 

proteins and their interactions and on the relevance of the proteins to the disease. GO48 

and Kyoto Encyclopedia of Genes and Genomes (KEGG)49 are the two resources 

widely used in the literature but there are other pathway and functional databases 

available (see Table 3). The KEGG database contains manually curated pathways 

within five areas: metabolism, genetic information processing, environmental information 

processing, cellular processes and human disease. Unlike GO, these pathways are 

species dependent.  The GO database contains species independent terms relating to 

genes and their products. There are three main classifications of ontologies, cellular 

component (CC), biological process (BP) and molecular function with several sub-A
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classifications under each of the three. In addition, there is a special GO consortium 

specifically focused on annotating genes relevant to cardiovascular disease 

(http://www.geneontology.org/GO.cardio.shtml), and, to date, have identified over 4,000 

genes with a cardiovascular disease association. The Go Cardiovascular Consortium 

also annotates gene products, including proteins and microRNAs.  Instead of a one-way 

exchange, the relationship between the cardiovascular proteomics community, including 

our group, and the consortium is circular. Researchers not only use GO annotation to 

inform their research, but can also submit data from their experiments to validate 

annotations and suggest novel cardiovascular GO terms.  

As an example, Isserlin et al.36 incorporated a differential expression analysis with 

a Gene Set Enrichment Analysis (GSEA) to identify sets of differentially expressed 

proteins that were enriched for functional terms relating to dilated cardiomyopathy. They 

utilized GO as well as several other sources of publicly available functional data to 

perform the GSEA and derived functional networks, which show novel processes in the 

progression from pre-symptomatic to full dilated cardiomyopathy.  

 

3.4. Network biology. The identification of differentially expressed proteins is only one 

part of a systems biology approach to proteomics. Further analyses are often performed 

on the set of differentially expressed proteins to elucidate their functional role in the 

disease pathology. In the conventional reductionist approach, experiments tend to 

address intracellular signalling cascades as linear models with the involved molecules 

confined to a signal pathway. The post-genomic shift in paradigm acknowledges the fact 

that many biological systems can be represented using concepts of network biology. 

Different pathways cross-talk with each other at points that can be graphically 

represented as well connected nodes or nexuses within a map of signalling networks50. A
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In addition to high-throughput data acquisition, the last decade introduced a number of 

sophisticated methodologies that intend to interrogate cellular interactions51-55. 

Preliminary analyses of these interactomes revealed the complexity of molecular 

signalling, which presents a challenge for accurate interpretation and application. It is 

now believed that the human interactome is comprised of ~20,000 protein-coding genes, 

~1,000 metabolites, and an undefined number of distinct proteins, while the number of 

functional links between these components is expected to be ~130,00051. An emerging 

computational discipline, network biology, has been proposed as a tool that may 

supplement traditional quantitative analysis and uncover relational properties that control 

the behaviour of a cell through data integration and computational modeling56. Network 

biology was successfully used to define gene regulatory patterns in physiological cardiac 

hypertrophy57 and highlight network topology of heart development and failure58. 

Increasing evidence suggest that combination of network concepts, such as centrality, 

with gene, protein or microRNA expression information may contribute to better 

prioritization of relevant biological targets59-61. 

 Despite their usefulness, networks analyses should be used with some degree of 

caution. It is currently not feasible to access and characterise the entire human 

proteome and so each proteomic network will consist of a subset of all possible proteins. 

Network studies, especially those focusing on protein-protein interactions, have shown 

that network properties from a sample or subset of a global network differ from the 

properties of the global network62-64. For example, biological networks have been 

described as ‘scale-free’ networks where there are several nodes with a high degree of 

connectivity and many nodes with a low degree of connectivity65. While this may be an 

appropriate assumption for a large-scale biological network, no statistical tests were 

applied to prove scale-freeness in biological networks and the smaller sub-networks, A
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including most protein-protein interaction networks, do not follow the same assumptions 

 

4. Is a systems-level integration of ‘omics’ data the way forward?  

Within a biological system, proteins do not act on their own, but rather, through complex 

interactions with metabolites, RNA, and other proteins. As we learn more about the 

pathophysiology of cardiovascular diseases, the underlying complexity becomes 

apparent, and the integration of `omics’ fields provides an unbiased way to elucidate the 

underlying mechanisms. The advancements in the technologies and the data availability 

of each of the ‘omics’ gives rise to a finer assessment but also provides a greater 

opportunity to study the complex interactions between genes, gene expression, proteins, 

and metabolites. Each of these ‘omics’ techniques provides a different level of 

information and by integrating them we can create new hypothesis and novel insights 

into disease.  

 

4.1. Integrating transcriptomics and proteomics. Initial investigations into the 

correlation between mRNA levels and protein levels have shown poor to moderate 

associations between the two. These low correlations can be attributed to epigenetic 

factors, translation rates and protein degradation rates, but they can also be due to the 

levels being assessed different samples, across different time points66.  To overcome 

some of these issues, Schwanhausser et al used mouse fibroblasts to quantify and 

analyse global mRNA and protein levels along with their associated half-lives, 

transcription and translation rates67.  To get an accurate picture of the strength of 

association between mRNA and protein levels, the authors used metabolic pulse 

labelling in an experimentally growing population of embryonic fibroblasts to record 

mRNA and proteins levels occurring at the same time point. They found that 40% of the A
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variation in proteins levels can be attributed to variation in mRNA levels but translation 

efficiency was the best predictor.  Certain combinations of half-lives and mRNA levels 

correspond to shared functional role, indicating shared selective pressures. In another 

transcriptomic and proteomic analysis, Zhao et al. reconstructed a heart specific 

metabolic network using transcriptome and proteome data with a model-building 

algorithm. Using generic genome-wide metabolic networks, they constructed heart 

specific models by mapping transcriptomic and proteomic data from the heart onto the 

genetic networks. The resulting model contained 2,803 reactions with 1,721 active 

enzymes in the heart. With this metabolic network, they were able to estimate the 

lethality, in silico, of house-keeping and heart specific genes and identify potential CVD 

biomarkers68. 

 

4.2. Integrating proteomics and metabolomics. Currently, proteomics and 

metabolomics are rarely used in tandem, but this technological platform offers 

advantages: First, it has the potential to identify emergent behaviour that cannot be 

found by studying proteins or metabolites in isolation. Besides, proteomic and 

metabolomics findings can effectively reinforce or cross-validate each other.  We utilized 

a combined proteomics and metabolomics approach to investigate cardiovascular 

diseases69. Our aim was to contribute to a better understanding of enzymatic and 

metabolite changes associated with cardiovascular diseases, including atherosclerosis6, 

70, ischemic preconditioning71, cardioprotective signalling72, 73  and atrial fibrillation74. In a 

recent study on myocardial hibernation, murine hearts were analysed by a combined 

transcriptomic, proteomic and metabolomic approach (Figure 5)75, 76. Unguided network 

analysis correctly identified hypoxia-inducible factor 1 alpha (HIF1α) activation as the 

top signalling pathway, and provided independent confirmation that anaerobic glycolysis A
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is affected. A direct link to cardiac remodelling was also provided by the activation of 

collagen-hydroxylases, which produce hydroxyproline. By combining the `omics’ data, 

the p-value of the HIF1α signalling pathway decreased by two orders of magnitude, and 

became the top-ranking pathway even though the it was not the top-ranked pathway 

based on either dataset individually. The proteomics and transcriptomics focused on and 

contributed different molecules to the protein network, which enabled the HIF1α 

signalling pathway to rise to the top-ranked pathway. 

   

4.3. Personal “–omics” profiles. In a proof of concept study, Chen et al. presented an 

integrative personal -omics" profile (iPOP) analysis, where the genetic, transcripomic, 

proteomic, metabolomic and autoantibody profiles were measured and integrated for 

one healthy individual over the course of 14 months77.  The measurements were 

assessed in blood components (plasma, serum and peripheral blood mononuclear cells 

(PBMC)) at several time points during the course of the study.   The `omic’ responses 

were studied in greater detail during two viral infections, showing the dynamic response 

of the immune system.  Interestingly, the authors identified a genetic predisposition to 

type II diabetes at the start of the study and noticed a pronounced change in insulin-

related responses after the second infection.  While the causal relationship between the 

infection and the onset of diabetes cannot be determined from one individual, these 

tightly linked events, and the indication that they are related, were only detected through 

the combination of ‘omics’ profiles. As the technology to measure ‘omics’ profiles 

becomes feasible, the greatest challenge will not be the generation of data, but their 

analysis.   
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5. Conclusions.  

A discrete biological function is very rarely attributed to one single molecule; more 

often it is the combined input of many proteins. The studies mentioned above, which 

integrate protein data with other ‘omics’ data including transcriptomic67,68,77, 

metabolomic75,76,77 and GWAS77, illustrate the utility of an integrative ‘omics’ approach to 

cardiovascular diseases. However, variants and changes from the genetic to the 

phenotypic level are not linearly associated and often variations seen at one level are 

absent at another. While the integration of data from different ‘omics’ techniques is still a 

challenge, the incorporation of proteomics with systems biology, and the application to 

study metabolism, is a promising area for future applications in cardiovascular diseases 

78, 79. Combining proteomics with stringent statistics, bioinformatics and other –omics 

technologies, such as metabolomics, can aid in identifying targets that have clinical 

relevance for working towards new therapies for cardiovascular disease80. 

Improvements in protein identification and quantification technologies as well as the 

availability of more proteomics datasets in public data repositories such as PRIDE32, 

combined with focused GO curation81, 82 will facilitate the application of systems biology 

to cardiovascular research.   
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FIGURE LEGENDS 

Figure 1. Proteomics approaches. Protein extracts can either be fractionated at the 

protein level prior to digestion or after protein digestion at the peptide level. In DIGE the 

protein extracts are labeled with different fluorescent dyes before they are separated by 

2-DE. For SILAC, cells are metabolically labeled in culture by incorporation of heavy or 

light amino acids. Alternatively, labeling is performed at the peptide level, using iTRAQ 

or TMT isobaric tags. Peptides are then analysed by tandem mass spectrometry 

(MS/MS). 2-DE, two-dimensional gel electrophoresis; DIGE, difference gel 

electrophoresis; 1-DE, one-dimensional gel electrophoresis; SILAC, stable isotope 

labeling with amino acids in cell culture; AA, amino acid; iTRAQ, isobaric tag for relative 

and absolute quantitation; TMT, tandem mass tag. 

 

Figure 2. Gel-based proteomics. Separation of the murine cardiac proteome by DIGE 

on different immobilized pH gradients: pH 3-10 NL (A) and pH 4-7 (B). The white box 

highlights the better resolution of the same area on the narrow pH gradient. (C) 

Molecular weight distribution of 6 extracellular glycoproteins by SDS-PAGE. The 

characteristic “laddering” in abdominal aortic aneurysms (AAA) compared to normal 

aortic tissue (CON) is indicative of proteolysis. (D) Incubation of healthy aortic tissues 

with matrix metalloproteinases-12 (MMP-12) induced a similar fragmentation pattern of 

fibronectin as observed in AAA. In comparison, degradation by matrix 

metalloproteinases-9 (MMP-9) was less pronounced (reproduced with permission from 

Didangelos et al, Mol Cell Proteomics, 201115). 

Figure 3. Computational approaches in proteomics. Bioinformatics has become an 

essential part of the proteomic workflow to comprehensively analyse and visualize 

global changes in proteins as biological networks.  A
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Figure 4. Protein Identification.  The visualisation of extracellular matrix (ECM) 

proteins, and the corresponding correlation networks, identified by proteomics in the 

secretome of two murine cell types: (A) aortic smooth muscle cells (SMC) and (B) 

cardiac fibroblasts (CF).  Correlation networks have been thresholded at a correlation 

coefficient > 0.90.  (C) Number of ECM proteins identified. Number of nodes (proteins) 

(D) and links (correlations) (E) found in each cell type, as well as those in common.  

 

Figure 5. Metabolomics. A comparison of control and hibernating murine hearts by 

high-resolution magic-angle-spinning 1H-magnetic resonance spectroscopy (HRMAS 1H-

MRS) analysis from solid hearts (A) and 1H-nuclear magnetic resonance spectroscopy 

(1H-NMR) of cardiac tissue extracts (B). Both techniques showed consistent changes in 

metabolites, i.e. the ratio of glutamate, lactate, and taurine in hibernating compared to 

control hearts as determined by HRMAS 1H-MRS was 0.81, 1.09, and 0.79, 

respectively, which is in good agreement with the measurements of 0.68, 1.13 and 0.72 

for the same metabolites by 1H-NMR. HRMAS 1H-MRS provides a means for measuring 

metabolites in intact hearts ex vivo. 1H-NMR of tissue extracts offers better resolution 

and allows the identification of more metabolites than HRMAS 1H-MRS spectra obtained 

from solid tissue.  
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Figure 5 Mayr et al 
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Table	  1.	  Comparison	  of	  Proteomics	  Methods
Abbr. Full	  name	  and	  explanation Advantages Disadvantages
DIGE Difference	  gel	  electrophoresis	   Quantitation	  at	  the	  protein	  level Low	  sensitivity

Visualisation	  of	  posttranslational	  modifications	  and	  protein	  isoforms Only	  the	  differentially	  expressed	  proteins	  tend	  to	  be	  identified	  by	  MS/MS
Good	  quantitative	  accuracy Proteins	  with	  very	  high	  or	  low	  pI	  or	  MW	  are	  not	  resolved	  on	  the	  gel

gel-‐LC-‐MS/MS Separation	  by	  SDS-‐PAGE	  before	  LC-‐MS/MS	  analysis Ease	  of	  use Prefractionation	  increases	  time	  requirements	  for	  MS/MS	  analysis
Prefractionation	  before	  LC-‐MS/MS	  anlaysis	  increases	  sensitivity Poor	  quantitative	  accuracy	  in	  complex	  mixtures	  without	  peptide	  labeling	  
"Laddering"	  as	  indication	  of	  proteolytic	  degradation Proteins	  with	  very	  high	  or	  low	  MW	  are	  not	  resolved	  on	  the	  gel

SILAC Stable	  isotope	  labelling	  with	  amino	  acids	  in	  cell	  culture Minimal	  experimental	  variation Quantitation	  the	  peptide	  level
Excellent	  quantitative	  accuracy Not	  suitable	  for	  cells	  that	  do	  not	  proliferate	  in	  culture,	  i.e.	  cardiomyocytes
Ease	  of	  use	  for	  cells	  in	  culture	  that	  proliferate	  and	  tolerate	  filtered	  serum	  supplements Metabolic	  labeling	  of	  animals	  is	  expensive

iTRAQ,	  TMT-‐tags Isotopic	  labeling	  of	  peptides Good	  quantiative	  accuracy Quantitation	  the	  peptide	  level
Can	  be	  used	  with	  tissues	  as	  well	  as	  cell	  cultures Mixed	  MS/MS	  spectra	  will	  contain	  reporter	  ions	  from	  different	  peptides
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Table 2. Differential Expression Methods
Abbr. Name Reference

NSAF Normalized Spectral Abundance Factor Zybailov et al. 

PLGEM Power Law Global Error Method Pavelka et al. 

SIN Normalized Spectral Index Griffin et al. 

SpI Spectral Index Fu et al. 

Qspec Qspec Choi et al. 

Hybrid Hybrid‐base approach Wang et al. 

 at K
ing's C

ollege L
ondon - Journals D

ept on January 7, 2013
http://cardiovascres.oxfordjournals.org/

D
ow

nloaded from
 

http://cardiovascres.oxfordjournals.org/


Table 3. Functional Annotation Databases
Abbr. Name Website

BBID Biological Biochemical Image Database http://bbid.grc.nia.nih.gov/

BioCarta BioCarta Pathways http://www.biocarta.com/genes/index.asp

GO Gene Ontology http://www.geneontology.org/

KEGG Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/

NCBI BioSystems NCBI BIoSystems Database http://www.ncbi.nlm.nih.gov/biosystems

OMIM Online Mendelian Inheritane in Man http://omim.org/

PANTHER Protein ANalysis THrough Evolutionary Relationshiphttp://www.pantherdb.org/

PID NCI‐Pathway Interaction Database http://pid.nci.nih.gov/

Reactome Reactome http://www.reactome.org/

WikiPathways WikiPathways http://www.wikipathways.org/index.php/WikiPa
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